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AN INITIAL INVESTIGATION INTO METHODS OF COMPUTING TRANSONIC
AERODYNAMIC SENSITIVITY COEFFICIENTS

I. Introduction

This final report will attempt to concisely summarize the activities and
accomplishments associated with NASA Grant NAG-1-793. The project started on
July 1, 1987 and officially terminated on December 31, 1994. While the total
funding for the project was $110,395, many lengthy periods existed in which little or
no funds were available for expenditure by the project; and all grant funds were
essentially expended by August 31, 1993. Fortunately, the effort was maintained by
significant financial support by the Aerospace Engineering Department in the form
of Graduate Assistantship funds and faculty salary support and by moral and
technical support from NASA Langley. In spite of these difficulties, significant
accomplishments were achieved by the project; and these are summarized below.

Il. Personnel
The individuals who have been associated with the project are as follows:

Leland A. Carlson, Professor of Aerospace Engineering -- Dr. Carlson
served as the principal investigator for the project. At various times, Dr., Carlson
was partially supported by the project.

Hesham M. El-banna, Graduate Research Assistant and Graduate Assistant
Non-Teaching (GANT) - Hesham El-banna joined the project at its inception.
During the project, he earned his Masters' and Ph.D. degrees using research
associated with the project for his thesis and dissertation. Dr. El-banna was
partially supported by the project at various times. He was also extensively
supported by the Aerospace Engineering Department as a GANT.

Alan Arslan -- Graduate Research Assistant Non-Teaching -- Alan Arslan
joined the project in Fall 1992. He was supported by the Aerospace Engineering
Department as a GANT. He used research associated with the project for his
masters' thesis.

Illl. Accomplishments
The primary accomplishments of the project are as follows:

1. Using the transonic small perturbation equation as a flowfield model, the
project demonstrated that the quasi-analytical method could be used to obtain
aerodynamic sensitivity coefficients for airfoils at subsonic, transonic, and
supersonic conditions for design variables such as Mach number, airfoil thickness,
maximum camber, angle of attack, and location of maximum camber. The approach
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was validated by comparison to results obtained using the finite difference
technique. It was established that the quasi-analytical approach was an accurate
method for obtaining aerodynamic sensitivity derivatives for airfoils at transonic
conditions and usually more efficient than the finite difference approach. These
initial results were among the first aerodynamic sensitivity results obtained by the
quasi-analytical approach for transonic conditions. -

2. The usage of symbolic manipulation software to determine the appropriate
expressions and computer coding associated with the quasi-analytical method for
sensitivity derivatives was investigated.  Using the three dimensional fully
conservative full potential flowfield model, it was determined that symbolic
manipulation along with a chain rule approach was extremely useful in developing a
combined flowfield and quasi-analytical sensitivity derivative’ code capable of
considering a large number of realistic design variables. Various methods of
solving the resulting large system of quasi-analytical equations were investigated. It
was concluded that for the direct solver approach, that the iterative conjugate
gradient method was accurate, capable of handling a large number of design
variables, and more efficient than the finite difference approach.

3. Using the three dimensional fully conservative full potential flowfield model,
the quasi-analytical method was applied to swept wings (i.e. three dimensional) at
transonic flow conditions. The study included as basic design variables freestream
Mach number, wing angle of attack, airfoil thickness, airfoil camber, location_of
airfoil maximum camber, wing twist angles at four spanwise locations, and the
coordinates of the wing tip. From sensitivity derivatives for these design variables,

sensitivities were also_ obtained for other variables of interest such as wing area, -

aspect ratio, wing sweep, and taper ratio. The resultant sensitivity derivative results
were verified by comparison with finite difference computations.  Sensitivity
derivatives were obtained chordwise for 9C/0Xp, spanwise for 9C/0Xp , and overall

for 9C /Xp, where X, is any design variable. The sensitivity derivatives were also
use to predict pressure distributions and aerodynamic coefficients at conditions
different from those at which the derivatives were obtained. These predicted results
demonstrated that sensitivity derivatives could be used over limited ranges for
predictive purposes. Sensitivity derivatives were also obtained over a range of
Mach numbers ranging from 0.8 up to 1.2 and for a variety of wing airfoil sections.
These results demonstrated the feasibility and usefulness of the quasi-analytical
approach for obtaining aerodynamic sensitivity derivatives about wings. It is
believed that they were among the first sensitivity results to be obtained using the
quasi-analytical method for wings at transonic conditions.

4. The incremental iterative technique has been applied to the three
dimensional transonic nonlinear small perturbation flowfield formulation, an
equivalent plate deflection model, and the associated aerodynamic and structural
discipline sensitivity equations; and coupled aeroelastic results for an aspect ratio
three wing in transonic flow have been obtained. This approach permitted the use
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of finer grids and inclusion of both aerodynamic and structural sensitivity derivatives
with the final results including full aeroelastic coupling. In addition, system
sensitivity derivatives were obtained. Results were obtained for nine aerodynamic
design variables and four structural design variables. The results demonstrated the
usefulness and feasibility of combining the incremental iterative approach with the
quasi-analytical formulation for obtaining both discipline and system sensitivity
derivatives. Again, these are among the first resuits to utilize the quasi-analytical
approach to obtain aerodynamic-structural coupled sensitivity derivatives and
system sensitivity derivatives. However, it appears that further studies are needed
in methods associated with determining system sensitivities and of utilizing this
information in optimization procedures. This effort is discussed in Section IV below.

IV. Progress in the Last Six Months

During the past six months, Arslan and Carison as part of a pilot study have
applied the incremental iterative technique to the transonic nonlinear small
perturbation formulation, an equivalent plate deflection model, and the associated
discipline sensitivity equations, to obtain coupled aeroelastic results for an AR=3
wing in transonic flow. This integrated approach allows the use of finer grids and
simultaneously yields the aerodynamic and structural deflection solutions, the
aerodynamic sensitivity derivatives for nine aerodynamic design variables, the
structural sensitivities for four design variables, and the coupling derivatives needed
for the system derivatives, which are computed subsequently. It is outlined in Fig. 1.

> [ Sweep flowfield by cross planes]]
[ Solve flowfield equations for Adix ]

[Solve aerodynamic sensitivity egs. for A(%)]
[ Solve structural egs.for A ]

[Solve structural sensitivity egs. for A(-a-)%%s—)]
A [Solve coupling derivative egs. for A( asatkk ) }
i ijk

[Solve coupling derivative eqs. for A(—s) }
ik

aACp i jj, kk

[ Update aerodynamic and structural boundary conditions]
[ Iterate until convergence]

-

[Solve system sensitivity eqs. for cﬁ( 2 3;‘, e etc]

Fig. 1 -- Integrated Solution Approach

Basic aerodynamic sensitivities were obtained at all 97x16x16 flowfield points
while aerodynamic coefficient and structural deflection derivatives were computed
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at 980 wing surface points, comprising ten half-span stations each having 49 points
on top and 49 on the lower surface. System derivatives were obtained with the
Global System Equation Method 2 (GSE2). Since Sobieski has suggested that
system derivatives can be obtained using condensed - information, system
sensitivities were computed from the fine grid aerodynamic, structures, and
discipline sensitivity results for two condensed cases. The first computed system
sensitivities at eight half-span ‘'stations each with 13 chordwise locations and the
second used five half-span stations each with 25 chordwise values. Limiting the
number of system sensitivities is desirable since the coupling derivatives required to
compute them treat each § and AC,considered in the system formulation as a
design variable. Thus, even for the condensed problem using a 25x5 system grid,
the number of design variables was effectively 138; and 125 lengthy coupling
vectors 98/0ACk and dACp/a8« had to be computed. Obviously, the inclusion of
system sensitivities greatly increases the problem complexity. While results were
obtained at each wing station, representative results for the 97x16x16 flowfield,
49x10 structural, and 25x5 system case are shown on Fig. 2. The wing was at
M..=0.82, a=2°, had 1° of twist (T,,), and the airfoil_ sectqons varied from a NACA

L ANL RS _-LEA &

2406 at the root to a NACA 1706 at the tip. The deflected wing position is shown
dotted, the 9C,/dTgpcurves are for the upper and lower surfaces, and in the two
lower plots the discipline derivatives are dotted while the system sensitivities are
solid. Note that the flow is supercritical, that the wing has significant deflection and
twist due to aerodynamic loading, and the upper surface shock wave strongly
affects the aerodynamic derivatives. Also, note that the system derivative dAC,/dTp
is significantly different from the discipline value near the trailing edge due to twist
induced by aerodynamic-structural coupling, and that dd/dt, where t is a wing
structural thickness parameter, differs in magnitude and sign from the
corresponding discipline result, dd/ot.

Unfortunately, comparison of the 13x8 and 25x5 system derivative results
indicates differences in values, magnitudes, and sometimes signs. Since these
sensitivities were obtained from the same fine grid aerodynamic, structural, and
discipline sensitivity solutions and since the differences do not appear to be due to
numerical error, they must be associated with the system derivative solution
approach, the number and location of condensed points considered, etc.

Since accurate system derivatives are required before the optimization portion of
a MDDO process can be applied to transonic wing design, the methodology and
approach for computing system derivatives for a transonic aeroelastic wing needs to
be further investigated. In addition, since the present study utilized a pilot code and
was primary a research investigation of feasibility, further work is needed to develop
an aerodynamics flowfield solver and sensitivity module that is suitable for
engineering applications and studies.

A copy of Mr. Arslan's masters' thesis and an abstract of a proposed AIAA
paper, which discuss this effort and include many of the details, will be sent under
separate cover to the project monitor.
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V. Publications and Degrees

The following degrees were earned at Texas A&M University by individuals
associated with this research project:

El-banna, Hesham M., Master of Science (Aerospace Engineering), May 1988.

El banna Hesham M Doctor of Philosophy (Aerospace Englneermg) August
1992. .

Arslan, Alain, Master of Science (Aerospace Engineering), December 1993.
The following publications resulted from research associated with this project:

El-banna, H. M., "Numerical Computation of Aerodynamic Sensitivity
Coefficients in the Transonlc and Supersonic Regimes," Master of Science Thesis,
Aerospace Engineering Department, Texas A&M University, College Station, Texas,
May 1988.

El-banna, H. M. and Carlson, L. A, "Determination of Aerodynamic Sensitivity
Coefficients in the Transonic and Supersomc Regimes," AIAA Paper 89-0532,
January 1989.

E| banna H. M and Carlson, L. A, "Determination of Aerodynamlc Sensitivity
Coefficients Based on the Transonic Small Perturbation Formulation," Journal of
Aircraft, \ol. 27, No. 6, June 1990, pp. 507-515.

El-banna, H. M. and Carlson, L. A., "Determination of Aerodynamic Sensitivity
Coefficients Based on the Three-Dimensional Full Potential Equation," AIAA Paper
92-2671, June 1992.

El-banna, H. M. and Carlson, L. A., "A Compendium of Transonic Aerodynamic
Sensitivity Coefficient Data," TAMRF Rept. 5802-9203, Texas A&M Research
Foundation, College Station, TX, July 1992.

El-banna, H. M., "Aerodynamic Sensitivity Analysis in the Transonic Regime,"
Doctor of Phnlosophy Dissertation, Aerospace Engineering Department, Texas A&M
University, College Station, Texas, August 1992.

Carlson, L. A. and El-banna, H. M., "Determination of Aerodynamic Sensitivity
Coefficients Based on the Three Dimensional Full Potential Equation: Users Guide
for Analysis/Sensitivity Program and Graphics Program, " Aerospace Engineering
Department, Texas A&M University, College Station, Texas, August 1992.
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Carlson, L. A. and El-banna, H. M., "Determination of Aerodynamic Sensitivity
Coefficients for Wings in Transonic Flow," Proceedings of the 3rd Pan American

Congress of Applied Mechanics, D. T. Mook, editor, Sao Paulo, Brazil, January
1993, pp. 13-16. '

Arslan, A. E. "Analysis and Numerical Computation of Sensitivity Derivatives in
the Transonic Regime," Master of Science Thesis, Aerospace Engineering, Texas
A&M University, College Station, Texas, December 1993.

El-banna, H. M. and Carison, L. A., "Aerodynamic Sensitivity Coefficients Using
the 3-D Full Potential Equation," accepted for publication in the Journal of
Aircraft, 1994.

Arslan, A. E. and Carlson, L. A, "Integrated Determination of Sensitivity
Derivatives for an Aeroelastic Transonic Wing," Submitted to the 5th
AIAAJUSAF/NASA/ISSMO  Symposium on  Multidisciplinary  Analysis  and
Optimization, September 1994.

Copies of some of these publications are included in the appendix of this report.
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DETERMINATION OF AERODYNAMIC SENSITIVITY COEFFICIENTS
IN THE TRANSONIC AND SUPERSONIC REGIMES

Hesham M. Elbanna*

and Leland A. Carlson

AlAA-89-0532

&

Texas A&M University

College Station,

Abstract

The quasi-analytical approach 1is developed
to compute airfoil aerodynamic sensitivity
coefficients in the transonic and supersonic
flight regimes. Initial investigation verifies
the feasibility of this approach as applied to
the transonic small petturbation residual
expression. Results are compared to those
obtained by the direct (finite difference)
approach and both methods are evaluated to
determine their computational accuracies and
efficiencies. The quasi-analytical approach is

shown to be superior and worth further
investigation.
Nomenclature

Al, A2 Coordinate stretching constants

C Maximum camber in fraction of chord

Cp Pressure coefficient

IM, JM Grid dimensions

JB Row above airfoil

L - Chordwise location of maximum camber

M Mach number

R Residual expression

T Maximum thickness in fraction of
chord

XD Design variable

f. g Cartesian coordinate stretching
functions

X, ¥ Cartesian coordinates

o« Angle of attack

v Ratio of specific heats

r Circulation

@ Perturbation potential function

aCp Cpr1 - Cpy

Subscripts

@ Free stream condition

b Body

P Pressure

u, 1 Upper, lower

TE Trailing edge

Introduction

Over the past few years, computational fluid
dynamics has evolved rapidly as a result of the
immense advancements in the computational field

and the 1impact of the wuse of computers on
obtaining numerical solutions to complex
problems. Accordingly, researchers are now

capable of calculating aerodynamic forces on
wing-body-nacelle-empennage configurations
subject to subsonic or transonic flows. A next
logical step would be to compute the sensitivity
of these forces to configuration geometry.

**Graduate Research Asst., Student Member ATAA
Professor, Aerospace Engr., Assoc. Fellow ATAA

Capyright ® American [nstitute of Aeronautics and
Astronaultics, [nc., 1989. All rights reserved.

Texas 77843

In order to improve the design of transonic
vehicles, design codes are being developed which
use optimization techniques; and, in order to be
successful, these codes require aerodynamic
sensitivity coefficients, which are defined as
the derivatives of the aerodynamic functions with

respect to the design variables. Obviously, it is -

desirable that such sensitivity coefficients be
‘easily obtained. Consequently, the primary
objective of this effort is to investigate the
feasibility of wusing the quasi-analytical
methodl"3 ~ for calculating the aerodynamic
sensitivity derivatives in the transonic and
supersonic flight regimes. As part of this work,
the resulting sensitivity coefficients are
compared to those obtained from the finite
difference approach. Finally, both methods are
evaluated to determine their computational
accuracies and efficiencies.

In the transonic regime, a variety of
flowfield solution methods exist. These range
from full Navier-Stokes solvers to transonic
small perturbation equation solvers. The
complexity of the equations that need to be
solved depends upon the flow phenomena in
question and the objective of the analysis. Since
it is not the objective of this work to develop
flowfield algorithms, the present research uses

the nonlinear transonic small perturbation
equation to determine and verify efficient
methods for calculating the aerodynamic

sensitivity derivatives. In addition, only two
dimensional results will be presented in this
initial work.

Background

Most recently, sensitivity methodology has
been successfully used in structural design® and
optimization programs’® primarily to assess the
effects of the variation of various fundamental
properties relative to the important physical
design variables. Moreover, researchers have
developed and applied sensitivity analysis for
analytical model improvement and assessment of
design trends. In most cases, a predominant
contributor to the cost and time in the
optimization procedures is the calculation of
derivatives. For this reason it is desirable in
aerodynamic optimization to have efficient
methods of determining the aerodynamic
sensitivity coefficients and, wherever possible,
to develop appropriate numerical methods for such
computations.

Currently, most methods for calculating
transonic aerodynamic sensitivity coefficients
are based wupon the finite difference
approximation to the derivatives. 1In this
approach, a design variable is perturbed from its
previous value, a new complete solution is
obtained, and the differences between the new and
the old solutions are used to obtain the
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sensitivity coefficients. This direct, or brute
force, technique has the disadvantage of being
potentially very computer intensive, especlally
if the governing equations are expensive to
solve. Accordingly, the need to eliminate these
costly and repetitive analyses is the primary
motivation for the development of altermative
efficient computational methods to determine the
aerodynamic sensitivity coefficients.

Problem Statement

Based on the foregoing discussion, the
current problem is formulated starting from the
generic quasi-analytical approach and manipulated
according to the rules given in Appendix A of
Ref.1l for the derivation of the general
sensitivity equation. This general sensitivity
equation is then applied to the residual
expression (R) of the transonic small
perturbation equation, which 1s a simple and
adequate description of the nonlinear phenomena
occurring in the transonic regime. Although this
expression 1is nonlinear in the perturbation
potential (p), the general sensitivity equation,
Eq.(l), 1is linear with respect to the unknown
sensitivicy (d¢/8XDj). It is to be noticed that
the practical implementation of the above step is
not achieved until the residual expression is
approximated on a finite domain and the
mathematical form of the problem rendered to that
of ome in linear algebra. This discretization
process is explained in detail in Ref.6.

Thus, the quasi-analytical method, as
applied to the residual expression of the
transonic small perturbation equation, yields the
sensitivity equations,

L A - B

where
R = (B1+Booy) oxx + @yy = O )
By - 1-M,’
By = — (y+1) M”
e = (x,y,XD) 3)

XD = set of design variables
XDy = tth design variable

subject to the airfoil boundary condition,

dy
Py(xy,0) - ;; o - F(x,XD) (4)

the infinity boundary condition,

for M <1

Po = — [8/(2x), 8 = nx/2, n - 0,1,2,3,4

or for M >1

Po~0 , 8 =nr/2, n=-1,2,3

¢y =0 , 8 -nx/2, n=-20,4 5

and the Kutta Condition
AP - 0 (T = Ap = const.), xfg < X = = (6)

Equation (1) is discretized into a system of
linear equations to be solved for the unknown
sensitivity vectors. The solution of this system
is obtained efficiently by using either a direct
or an iterative procedure that allows for
multiple right hand sides. This approach |is
explained in the following section and has the
advantage that several unknown vectors can be
obtained simultaneously, each vector representing
the sensitivity of the potential (¢) with respect
to some design variable XDj.

At this stage, it is convenient to define
the vector of design variables

XD -~ { XDy, XDsp, , XDy 1} (7)
and to exactly determine which variables
influence the solution of Eq.(2). In doing so,
the relation between the sensitivity coefficients
corresponding to these variables and the form of
the optimization algorithm that utilizes this
information needs to be considered. Notice that
the derivatives computed in this study, namely,
the first partial derivatives, are adequate for a
typical optimization routine if it were to be
applied to the present two dimensional problem.
Notice also that some optimization studies might
require higher derivatives.

For the transonic flow problem, an
appropriate choice of the first design variable
is the free stream Mach Number (M,). This
variable appears In the governing Eq.(2)
and has an important influence on the character
of the equation via its influence on local Mach
number ( for M<l,the equation is elliptic, for
M>1, the equation is hyperbolic ) and thus on the
nature of the solution. For this reason, it 1is
desirable to have M, as one of the design
variables.

Next, it 1is appropriate to examine the
boundary condition given by Eq.(5). In the
transonlc small perturbation formulation, the
angle of attack («) enters the problem through
the boundary condition and thus,

dy
Fy= | — =~y -« (8)
1 dx |b 1

For simplicity, the function (F) should be easily
differentiable with respect to the design
variables defining the airfoil geometry. This
desirable feature simplifies the computation of
the right hand side term of the sensitivity
equation. Therefore, it would seem plausible to
have a simple analytical expression for modeling
the upper and lower surfaces of the airfoil.

For the present studies, it was decided to
limit consideration to two basic airfoil
sections, namely parabolic-arc sections, and the
NACA four-digit sections, whose families of wing
sections are obtained by combining a mean line
and a thickness distribution’. The resultant
expressions possess the necessary features that
sult the problem, mainly the concise description
of the airfoil surfaces in terms of several
geometric design variables. The expressions are
as follows :




For parabolic-arc sections
c(2Lx—x")/L? +2Tx(l-x), x<L
Yu 2 2 (€))
1 le{(1-Ly+2Lx—x"}/(1-L) $2Tx(1-x), x>L
For NACA four-digit sections

C(2Lx—x22/L2 + 5T(0.2969./x0.126x
—0.1516x +0.2843x -0.1015x "), x<L

Yu (10)

C[(1—2L)+2Lx—le/(1—L)2 + 5T(0.2949/x
—0.126x-0.3516x +0.2843x -0.1015x ), oL

Each of the quantaties C, L, and T is
expressed as a fraction of the chord (e.g. if T
is 6% chord then T - 0.06). Differentiating
Eqs.(9) and (10) with vrespect to x and
substituting the results into Eq.(8) yields :

For parabolic-arc sections
Fy,1 = 2C(L—x)/LL * 2T(1-2x) - « (11)
For NACA four-digit sections

Fy,1 = 2C(L-x)/LL * 5T(0.14845//x~0.126

~0.7032x+0.8529x°-0.406x") - « (12)
where
L?, xsL )
1L - ] (13)
(1-1y?, oL

Egqs. (11) and (12) are simple analytical
expressions in terms of the four variables T, L,
C, and «. Thus,

W =-(T, Mo, «, L, C} (14)

represents the complete set of design variables
that define the present two-dimensional airfoil
sensitivity problem. Notice that these variables
are completely uncoupled and, thus the
sensitivity equation can be solved independently
with respect to each variable8.

Mathematical Treatment and Solution Procedure
Problem Discretization

Equation (1) represents the pgeneral
sensitivity equation applied to the residual R.
Now, in order to solve the problem numerically,
Eq.(2) is formulated computationally on a finite
domain. This transformation is achieved by using
a stretched Cartesian grid that maps the infinite
physical domain onto a finite computational grid.
In this study, the grid used is based upon a
hyperbolic tangent transformation that places the
outer boundaries at infinity. Accordingly, the
computational variables used are given by,

¢ = tanh Ajx (15)
n = tanh A1y (16)

In addition, the stretching functions are
defined as,

£ = (d€/dx) = Ag(1~€7) - (17)

g = (dn/dy) = A1(1-n) (18)
so that,

ox = fog (19)

vy = BP (20)

Pxx — f ?f‘#’f)f (21)

eyy = & (Begly B (22)

Substituting from Eqs.(19)-(22) into Eq.(2),
yields the transformed residual expression,

R = [B1+Bofpe] £(fog)e + glgog)ny = O (23) -

This equation 1{is solved numerically by an
approximate factorization scheme’ in which the
objective is to force the residual to zero at
each point of the computational domain. In finite
difference form, Eq.(23) can be written as,

Ri,j = (B + By(piel,j-ei-1,1)/(288)] £i/6€"
fvi,jfisleisl, 571, )
—(2V1.j—1)f1_a(¢1,j—¢{;1;j)

-Q-vy PE1372(01-1,57%i-2,1)]
+ [gy+hlei, j+1¥1,§)
-gj-uleg,j-o1,5-171] g.J/An2 (24)
where

vi,§ - 1 if point (i,j) is subsonic
vi - 0 if point (i,j) is supersonic

Eq.{24) 1is the discretized form of the residual
at a general point (i,j) in terms of ¢ values at
surrounding points. Consequently, R at 1{,j can be
viewed as a function of the ¢ values at
neighboring points; and, therefore, the
differentiation of the residual expression 1is
straight forward.

Differentjation of the Residual

Rearranging Eq.(24) yields

Ri, j = €191, * €20i+1,jPi-1,j * €39i+1,j%1,]
+ eqpi-1,§%i,j * ©5P1+1,jP1-2,]
+ cePi-1,j%1-2,5 * C7¢i—1,j2 + ce¢1+1,12
+ cgpisl,j * C10PiI-1,j * CL1Pi,j+1

+ e129i,1-1 * €1391-2,j (25)

For a fixed computational grid, the
coefficients ¢y, ¢3, ... , ¢33 are functions only
of By and By which in turn are functions of Mu.
This fact is used when differentiating Eq.(25)
with respect to M, in order to obtain the right
hand side (38R/3M,). It 1is also necessary to
consider the treatment of varlous types of grid
points and examine the effect on the general
residual expression. Several groups of points,
such as those adjacent to the alrfoil, to the
wake cut, and to infinity boundaries, need
special treatment. Accordingly, it is necessary
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to revise the residual expression at these
boundary points to 1include the boundary
conditions. The resulting updates are used to
modify the residual equation, Eq.(25), and yield
a set of expressions, each being valid for a
group of boundary points. The details of these
operations are found in Ref.6.

In setting up the complete quasi-analytical
problem the circulation and its dependence upon
trailing edge potentials must be carefully
included. Since the circulation is determined by
the difference in potentials at the trailing
edge,

' = @uTE — PITE (26)
or, by interpolating the trailing edge values
I =Ty { 1.5 (¢17E-1,J8 —PITE-1,JB-1)

= 0.5 (¢ITE-1,JB+1®PITE-1,JB-2) ]

+ Tp [ 1.5 (e1TE,JB —®ITE,JB-1 )

= 0.5 (e1TE,JB+1 ~PITE,JB-2 ) | 27

where
Ty = [ §(x=0.5) — £(ITE-1) | / a¢ (28)
Ty = [ 1-Tp ] (29)

and since a branch cut extends from the trailing
edge to downstream infinity, the trailing edge
potentials appear in the residual expressions for
points along the branch cut. In addition, since
in the two dimensional case the infinity boundary
conditions are proportional to the circulation,
the trailing edge potentials also appear in the
residual expressions at points adjacent to the
outer boundaries. Consequently, the- resultant
matrix (dR/d¢), while banded, also contains many
nonzero elements far from the central band.
Notice that the presence of these elements
greatly complicates the rapid and efficient
solution of the sensitivity equation, Eq.(1).

The resulting residual expressions are
differentiated analytically with respect to the
potential (). To be more specific, each equation
is differentiated with respect to the potential
at neighboring points and trailing edge points
(the later enters as a result of the implicit
nature of the circulation effects). These points
are denoted by the counters (ii,jj) and are given
by,

(1.3-1),  (1.3), (i,j+1), (i-2.3), (i-1,j),
(i+1,j), (ITE-1,JB-2), (ITE-1,JB-1), (ITE-
1,JB), (ITE-1,JB+1), (ITE,JB-2), (ITE.JB-1),
(ITE,JB), (ITE,JB+l).

Solution about a Fixed Design Point

Once the residual relations are obtained,
the actual coefficients are assembled by
evaluating the appropriate analytical
expresssions using a flowfield solution obtained
from Eq.(2) for a given set of conditions (i.e.
about a fixed design point). Similarly, the right
hand sides are evaluated by differentiating the
analytical expressions for the residual with
respect to each design variable. Again, the
details and results of these steps are found in

Ref.7.

The end result 1is that the coefficient
matrix (3R /apll_jj) is of size (IM-2)*(IM-
2)x(IM-2)*(JM-2) for a genmeral (IM*JM) grid. This
system is large, of block structure, diagonally
dominant, and sparse; and, while banded, also
contains many nonzero elements far from the
central band. As a result of this size and
structure, it is obvious that a reasonably fast
scheme for solving Eq.(l) is needed.

Currently, it is very difficult to single
out an optimum routine that handles a general
large sparse system of linear equations for which
the coefficient matrix is unsymmetric. This is
due to the fact that, unlike the theory of
symmetric matrices, the theory of general
unsymmetric matrices is more involved and has yet
to be developed. Since research in the above
areas 1is currently very active and specialized,
any attempt to cover these topics in detail would
be laborious. For this reason, it was decided to
use a few general approaches that were available
in the literature and that could be integrated
into the sensitivity codes with adjustments. This
approach would allow an evaluation of the overall
cost involved in solving the current two-
dimensional problem and would give a crude
estimate of the effort Involved in solving a
three dimensional problem.

. The first solver is based on standard
Gaussian Elimination with partial pivoting and
full storage. The second is based on triangular
decomposition and uses a compact storage scheme
that avoides handling the zero entries and
therefore should be more efficient than standard
Guassian Elimination. The third solver is based
on a Gauss-Seidel iterative scheme and was not
optimized for speed (through the choice of
optimum acceleration parameters) but uses sparse
matrix technology Iin processing only the nonzero
elements. The fourth and last solver used _is
based on the conjugate gradient methodlZ.
Handling the sparsity pattern for the third and
fourth solvers {is achieved by assembling the
symbolic part of the coefficient matrix only once
for a given grid size and given free-stream
(subsonic versus supersonic). The resultant
structure is then stored on a diskfile. Before
the numerical part is executed, the symbolie
information is read into the code and used
directly to assemble the new wmatrix. This
procedure is followed in order to reduce the time
consumed in assembling the coefficient matrix.
Notice also that in the Gauss-Seidel and
conjugate-gradient solvers that the error
tolerances for the coefficients involving maximum
thickness, free stream Mach number, and location
of wmaximum camber were 1.E-06 while those on
angle of attack and maximum camber were 1.E-04.

Once the sensitivities of the potentials,
and thus the Cp distribution, to the design
variables are known, the sensitivity of the lift
coefficients to the design variables can be
easily computed. To minimize errors, these
coefficients are computed using

CL = 2T =2 (eyTE~*1TE) (30)

and hence,

aC[/aX[)’~ - 2 (azpuTE/aXDi—a«p”E/aXDi) (31)



Finally, all methods used for computing the
derivatives are compared to the finite-
difference approach and the results are presented
and evaluated to determine the computational
accuracy and efficiency (with regards to time) of
each method.

Test Cases

In this study, the quasi-analytical wmethod
has been used to determine the aerodynamic
sensitivity coefficients at three freestream
Mach numbers (M, = 0.2, 0.8, 1.2) for two
arbitrarily selected airfoils, each at one degree
angle of attack. The first 1is a cambered
parabolic arc section having 1% camber at 40%
chord, a maximum thickness of 6% at 50% chord,
and which is designated P1406; and the second is
a NACA 1406 airfoil. Since most of the
interesting captured phenomena were found to be
identical for both airfoils, only results for the
NACA 1406 airfoil are presented in this paper.

In the following, two types of results will
be presented. The first will be plots of Cp
versus chord for the three chosen Mach numbers.
The second will be the corresponding plots of
(3Cp/3T), (3Cp/3My), (3Cp/dx), (4Cp/aC), and
(3Cp/3L) obtained by the quasi-analytical method.
In addition, all of the figures will also contain
results obtained wusing the direct (finite
difference) approach in which each design
variable was individually perturbed by a small
amount, typically 0.001, and a new flowfield
solution obtained. Then the sensitivities were
computed using ACp/aXD and are shown via dashed
lines. In many cases the lines are coincident
with the quasi-analytical results and cannot be
observed. Table I compares results obtained by
the two methods, and in most cases the agreement
is within one percent.

In all cases, an 81%20 stretched Cartesian
grid was utilized. 1In addition, for these
studies, the flowfield was normally computed
using double precision arithmetic and the maximum
residual reduced eight orders of magnitude. It
was felt that this level of convergence was
necessary in order to accurately evaluate
sensitivity coefficients wusing a finite
difference approach, although such convergence
may not be required in the flowfield solver for
the quasi-analytical method.

Results and Discussion

Subsonic Case (M., = 0.2)

Initial studles concentrated on subsonic
cases since at least approximate results would be
known from thin airfoil theory. Figure 1 shows
the pressure distribution for the NACA 1406
airfoil while Figs.2a and 2b show the sensitivity
of the pressure to thickness for the same
airfoil. As expected from thin airfoil theory,
the upper and lower surface values are
essentially identical and the difference is very
small everywhere. Also shown on the same figure
(and on subsequent figures) by the dashed line is
the result obtained by wusing the finite
difference approach; and as can be seen, the
agreement betweeen the two approaches 1is
excellent. -

The sensitivity of pressure to freestream

Mach number is plotted on Figs.3a and 3b. It is
noticed that while the profiles for the upper and
lower surfaces are similar, they are not equal in
magnitude, indicating a nonlinear variation with
Mach number as predicted by simple Prandtl-
Glauret Theory. However, as indicated by the
results on Fig.3b, the magnitudes for this
subsonic Mach number are very low.

The sensitivity of the pressure coefficients
to angle of attack "are shown for this case on
Figs.4a and 4b. 'As expected from linear thin
airfoil theory, the upper and lower surface
curves are essentially equal in magnitude but of
opposite sign. Not surprisingly, the sensitivity
of the delta Cp variation, Fig.4b, has the shape
of the pressure difference curve for a flat plate
at angle of attack; and its magnitude,
particularly near the leading edge 1is quite
large.

On Figs.5a and 5b is plotted the sensirivity
of the pressure coefficient to the amount of
maximum camber. Since camber contributes to lift,
it is expected from thin airfoil theory that
these values should be "equal but opposite in
sign" for the upper and lower surfaces. In
addition, the pressure difference curve has the
correct shape for that associated with a l4 mean
line with the peak occuring at 30% chord’ and has
magnitude comparable to those for the (3Cp/dx)
curves.

Finally, the sensitivity of pressure to the
location of the maximum camber point is portrayed
on Figs.6a and 6éb, and to say the least the
results are interesting. Since maximum camber

location affects the camber profile and hence -

1ift, the equal and opposite behavior of the
upper and lower surface coefficients is expected.
In addition, the pressure difference sensitivity
is primarily negative forward of the point of
maximum camber and positive aft of {it. This
result indicates that if the location of maximum
camber were moved rearward slightly (i.e. a
positive aL) that 1ift would be decreased on the
forward portien of the airfoil and increased on
the aft portion of the airfoil, which is in
agreement with the results presented in Ref.7.

Transonic Case (M, = 0.8)

At Mgy = 0.8, the flow about the NACA 1406
airfoil has a strong shock at 40% chord, Fig.7;
and the lower surface is entirely subcritical. As
a consequence, the variation with chord of the
sensitivity —coefficients 1is considerably
different than in the subsonic case.

Figs.8a and Bb show the sensitivity of
pressure to the maximum thickness; and while the
lower surface profile is similar to that obtained
at subsonic conditions, the upper surface curve
and the pressure difference coefficient plot show
the effect of the upper surface shock wave, The
large peak on the curves corresponds to the
location of the shock wave and indicates that the
shock wave location Is very sensitive to maximum
thickness. Notice on Figs.Ba and 8b the excellent
agreement of the quasi-analytical results
indicated by the solid lines with those obtained
using the finite-differece approach  (dashed
lines).

The results for (3Cp/dM4y,), which are showm
on Figs.9a and 9b, are similar. The lower surface
curve is typical of a subsonic flow, while the
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upper surface and the pressure difference
coefficients reflect the presence of the upper
surface shock wave. Similar comments can be made
for the remaining design variable coeficients,
which are plotted on Figs.10, 11, and 12.

Examination of the curves in the vicinity of
the shock wave location indicates that the
pressure senslitivity and indirectly the shock
wave location is about equally influenced by the
maximum thickness, freestream Mach number, and
angle of attack. However, in comparison it 1is
relatively insensitive to location of maximum
camber; but, perhaps surprisingly so, the
pressure {s twice as sensitive to the amount of
maximum camber as it {s to the other design
variables. It should also be noticed that the
lift {s most sensitive to angle of attack and to
maximum camber.

In addition, Fig.ll shows a discrepancy
between the results obtained by the direct
approach and those obtained thru the quasi-
analytical method. It will be shown in the
following section that this discrepancy is
related to the choice of the step size used in
computing the finite-difference solution, thus
revealing a significant deficiency in computing
the sensitivity derivatives in nonlinear regimes
via the finite-difference approach.

upersoni e -1.2

In order to Investigate the applicability of
the quasi-analytical method at supersonic
freestream Mach numbers, solutions were obtained
for the NACA 1406 airfoil at Mach 1.2. At this
condition, the flow is transonic in that the bow
shock 1s detached, and there is a region of
subsonic flow extending to approximately the
quarter chord, Fig.13. Figures 14-18 show the
pressure sensitivities for these cases, and Table
I lists the 1ift sensitivities.

Examination of the plots shows that the
pressure sensitivity coefficients have different
trends and magnitudes from those computed for
subsonic freestream supercritical conditions, and
that they are approaching the form expected from
supersonic linear theory. These changes are
particularly evident in the 1lift derivatives
presented In Table I. Notice that the derivatives
with respect to the design variables maximum
thickness, Mach number, and location of maximum
camber have swltched sign. In addition, as
expected from linear theory, the influence of
camber on lift has decreased significantly; and
at My = 1.2 is only about 15% of the angle of
attack effect as compared to a factor of about
two at My = 0.8. Notice also that Fig.l5 shows a
discrepancy similar to that found in Fig.ll.

me ariso

Obviously, in the development of the quasi-
analytical method it was hoped that not only
would this approach yield accurate values for the
aerodynamic sensitivity coefficients but also
that it would be more efficient than the brute
force finite difference approach. Table II
presents some comparisons concerning the amount
of computational effort required to obtain
solutions by the two approaches.

In comparing the values, several {tems
should be kept in mind. First, it has been

assumed that the finite difference approach will
require six independent solutions. In practice it
might be possible to start each finite difference
solution from a previous solution and, thus,
decrease the time to convergence. However, to be’
accurate, the finite difference approach will
probably require double precision and will have
to be extremely well converged (i.e.l1.E-08).
Nevertheless, the values for the finite
difference approach probably should be viewed as
maximum values.

Second, the methods used for obtaining the
sensitivity coefficients have not been optimized
and, as mentioned earlier, may not even be
optimum; and the flowfield solution required for
the quasi-analytical approach may not need double
precision and may not have to be as tightly
converged. Thus the values shown for the quasi-
analytical approach should also be viewed as
maximum values.

In spite of these 1limitations, results
obtained by direct methods do indicate, that the
quasi-analytical method is at transonic
conditions potentially more computationally
efficient than the brute force finite difference
approach. .

Notice that in this study, the initial guess
used in computing the sensitivity derivatives via
iterative methods was arbitrarily chosen as the
zero-vector. In addition, time comparisons
presented in Table II show that iterative methods
are in general less efficient than direct methods
if the derivatives for the current two-
dimensional problem were sought about some
general design point. However, if the objective
is to incorporate the sensitivity derivatives in
an optimization loop (i.e. to use the derivatives
in a continuation problem), then, a good initial
guess (which in this case would be available)
would enhance convergence and the overall cost of
computing the derivatives using i{terative methods
might be reduced. These points should be taken
into consideration when a sensitivity study is to
be Integrated into an optimization procedure.

dditional Test Cases

The first group of cases are carried out to
investigate the performance of the NACA 1406
airfoil for a range of Mach numbers from 0.79 to
0.86 in increments of 0.01. As shown in Fig.l9,
this range of transonic Mach numbers encompasses
the development of the shock wave on the upper
surface of the airfoil. Also, as shown on Figs.20
and 21 for the cases involving thickness, Mach
number, and maximum camber, the quasi-analytical
derivatives are in the vicinity of the shockwave
frequently different from those obtained by the
finite-difference approach. This discrepancy
raises two questions -- What is the cause of the

- disagreement and which set of derivatives is more

accurate 7?7 Examination of the variation of the
integrated coefficient, 3CL/dXDy with M,, which
is portrayed on Fig.22, shows that the quasi-
analytical results are smooth and follow a
definite trend while the finite difference values
are at best “"discontinuous™. Consequently, it {s
concluded that the finite-difference results are
less accurate. In order to observe the
performance of the finite-difference approach in
the transonic regime, it is necessary to examine
the effect of changing the step size (delta of




the design variable) on the computed derivatives.
Four different values for the step size (1.E-03,
1.E-04, 1.,E-05, and 1.E-06) were chosen and
applied to the NACA 1406 at a Mach number of
0.84. Examination of the results (Table III) show
that as the step size is decreased, the finite
difference 1lift coefficient sensitivity
derivatives approach the values computed by the
quasi-analytical method. However, in some cases,
for small AXD; values, oscillations in the
pressure coefficient sensitivity derivatives have
been observed depending upon the machine used and
the method of storing and retrieving the data.
These oscillations combined with the difficulty
of properly choosing a suitable finite difference
AXDy a priori indicates that the finite
difference approach is probably not a practical
method of efficiently computing sensitivity
coefficients. On the other hand, the present
results demonstrate that the quasi-analytical
method can be wused accurately to obtain such
coefficients in the transonic flight regime.

Conclusion

Based upon these investigations and results,
it is concluded that the quasi-analytical method
is a feasible approach for accurately obtaining
transonic aerodynamic sensitivity coefficients in
two dimensions. The results obtained from the
quasi-analytical method are almost identical to
those obtained by the brute force (finite
difference) technique. Furthermore, the study
indicates that obtalning the quasi-analytical
transonic derivates using a direct solver is more
efficient than computing the derivatives by the
finite difference method.
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Table 1

Accuracy of Quasi—-Analytical Method
for Computing
Lift Coefficient Sensitivity Derivatives

NACA 1406, GRID B1x20

xD.||METHOD] M_=0.2 M_=0.8 M_=1.2
T FD 0.0044 0.5232 |-0.29a%
aA 0.0044 0.5447 -0.3376
Mo FD 0.0471 0.9708 1.0235
[#a] 0.0470 Q.9905 -0.0703
a FD 6.1385 |10.5229 4.8758
an 6.1386 10.5229 4.8726
C FD 9.9380 |19.57&7 0.7695
oA 9.9381 |18.6154 0.7356
L £D 0.0696 0.1499 |-0.0348
gA | 0.0693 0.1496 |-0.0349

FD Finite-Difference
OA Quasi -Analytical
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Table II

Time* Comparisons
for Obtaining Sensitivity Coefficients
for Five Design Variables

NACA 1406, GRID 81%20

METHOD M_=0.2 M_=0.8 M-=1-2‘4]
FD 1.0000 1.0000 | 1.0000
™ 2.5187 0.9962 | 0.3929
GE 2.4089 0.9927 | 0.5165
GS 0.9971 1.5410 | —————o
CG 35.2264 | 10.6199 | —————-

N
P140&6, GRID 81420

METHOD M_=0.2 M_=0.8 | M_=1.2 }
FD 1.0000 1.0000 | 1.0000
TD 1.8808 0.8550 | 0.3930
GE 1.7891 0.9397 | 0.5202
GS 0.7153 1.5526 | —————
CG 26.3326 | 10.0323 | ———

FD Finite-Difference

TD Triangular—-Decomposition

GE Gauss-Elimination

GS Guass—-Seidel

CG Conjugate—-Gradient

b All CPU times were normalized by the
time taken to compute FD derivatives

Table III

Effect of Changing Step Size Delta
on Finite Difference

Lift Coefficient Sensitivity Derivatives

NACA 1406, GRID 81%20, M_=0.84

DELTA XD.[| XD,.=T XD =M. XD, =C
1.E-03 7.7603 7.8715 | 24.0912 |
1.e-04 || -0.8493 | -0.6340 | 83.9853
1.E-05 ~0.8497 | -0.6364 | 14.7719
1.E-06 "0.8498 | -0.6366 | 14.7695

QA l —0.8498 | -0.6367 14_76954]

QA Quasi—-Analytical Lift Coefficient
Sensitivity Derivatives

8Cp/aT

8ACp/8T

-0
-0.§<
) ?\
0.5
1.0 T T
0.0 0.2 0.4 o.e 0.8 10
X
Fig.1 Pressure Coefficisnt, Me=02
-10.0
.6'0_
ool /_\
5.0
10.0 - - T
0.0 0z 0.4 c.8 0.8 1.0
X
(a)
10.0
6.0
0.0
-6‘0-
-10.0 - r T - -
0.0 0.2 0.4 a.s 0.8 1.0
X
{6}

Fig.2 Sensitivity of Pressure to Maximum Thickness, Me=02



JACP/AMea

3Cp/da

3ACp/3a

<01

0.2

0.1

o
°
.

-0.1

0.0 02 0.4 0.6 os 10

Fig.3 Sensitivity of Pressure to Mach Number, M==0.2

-20.0

-10.0

0.0

10.0 4

200

200

10.0

0.0

-10.0 1

-20.0 T T T

(bl )
Fig.4 Sensitivity of Pressure to Angle of Attack, Me=0.2

-10.0 4

0.0 4

acp/oC

10.0

200

0.0

20.0

04

(a)

a8

os

10.0 4

0.0

dacCp/acC

-10.0

-20.0

0.0

Fig.5 Sensitivity of Pressure to Maximum Camber, Mewo=0.2

04

X
{b)

-0.24

0.0 1

aCp/oL

0.0

02

0.4

0.2 4

0.0 1

3aCp/aL

-0.24

0.0

Fig.6 Sensitivity of Pressure to Location of Max Camber, Meo=02




Vi

-40.0
-20.0
8
g
-1.0 \Q 0.0 { ————mn
[5)
Ll
o5 20.0
a 1 40.0 -
o oo 0.0 0.2 0.4 0 oe 1.0
X
0.5 (e}
40.0
1.0 r T T T
0.0 ¥} 0.4 08 os 1.0 20.0 1
X 8
=
o
3 00
Fig.7 Pressure Coefficient, M=0.8 S
<
-20.0
-40.0 T ; 3 T
0.0 0.2 04 0.8 0.8 1.0
X
{b)
Fig.9 Sensitivity of Pressure to Mach Number, M==0.8
-40.0
-20.0
-40.0
5
3 ol /7 —_—
< 2
> -20.0
20.0 S
a 0.0
O
Q —
40.0 v - ”
0.0 0.2 0.4 0.8 0.8 1.0 20.04
X
{a)
40.0 40.0 T - - .
0.0 0.2 04 0.8 0.8 1.0
X
20.0 {a)
40.0
[
3
) 0.0
B3 20.0
8
-20.04 QQ
& oo
4
S
-40.0 - r T )
0.0 02 0.4 0.6 (X ] 1.0 -20.04
X
G)]
- . . 0.0 v T T T
Fig.8 Sensitivity of Pressure to Maximum Thickness, Meo=0.8 0.0 0.2 04 0.6 08 1.0
. . X
{b}

Fig.10 Sensitivity of Pressure to Angle of Attack, Me=0.8



aCp/aC

8ACp/aC

aCp/oL

4ACp/oL

Fig.12 Sensitivity of Pressure o

-200.0
&
(XY
-100.0 HE
. .
H
/_JL
. 0
0.04{ == N e —
100.0
200.0 T - T T
0.0 02 0.4 o.e [X] 10
X
(a)
200.0
-
RS
Fat
H
100.0 - HE
[
H
e
0.0 L
-100.0 1
-200.0 - T T
c.0 6.2 0.4 a.s o.e 10
bl
Fig.11 Sensitivity of Pressurs to Maximum Camber, M=0.8
-20
0.0 W ——
2.0
40 T T g T
0.0 0.2 04 0.8 o8 1.0
X
(a)
0.0+
-40 T - . .
0.0 0.2 0.4 0 os 10
X
b}

)cation of Max Camber, Meo=0.8

0.6 1

10

0.0

-10.0

Fig.13 Pressure Cosfficient, M==12

acp/aT

aACp/aT

-1.0 4

Fig.14 Sensitivity of Pressure to Maximum Thickness, Me=12

02 a.4 0.8 os 1.0

)

—k

—m —R —&

:
T
I




T
v

B

-1.0 4

-0.5 1

G.0 1

JICp/IMe=

'

0.5

-0.64

3ACpP/aM=
o
2

Q.0

0.4

(b

0.8

Fig.15 Sensitivity of Pressure to Mach Number, Mc=12

-20.0
-10.04
5
2
S 0.0
O
<
10.0 4
0.0 T T
0.0 0.2 0.4 0.6 08 10
X
{a)
20.0
10.0
& T
S oo
a o
3
©
-10.0
=200 - - : x
0.0 0.2 04 0.6 0.8 10
X
(b}

Fig.16 Sensitivity of Pressure to Angle of Attack, M==12

aCptacC

daCp/ac

-20.0

-10.0

V0.0 4

200
0.0

40.0

20.0

0.0

-20.0

Fig.T7 Sensitivity of Pressure to Maximum Camber, Me=12

-1.0
-0.6
..J
2
a 0.0
(&)
L)
0.5
1.0 T Q
0.0 0.2 0.4 X} 0.8
X
(a)
2.0
1.0+
3
2
S 0.0
<
L)
-1.0
-2.0 T T g
0.0 0.2 04 0.8 08
X
{b}

Fig.18 Sensitivity of Pressure to Location of Max Camber, Meo=12



-0.6 4

00

ce

0.5

0.2 0.4 0.8 0.8 10

Fig.19 Pressure Coefficient

400.0

300.0

200.0 4

BACP/aT

100.0

0.0 1

-100.0

0.0

400.0

(a)

300.0

200.0

100.0

BACP/OMee

0.0

-100.0
0.0

400.0

(bl

300.0

200.0 1

dACP/AC

100.0

0.0 4

-100.0

0.0

0.2 04 0.8 os 1.0
X

(c)

Fig.20 F-D Pressure Differance Coefficient Sensitivity Derivatives

400.0

300.0 {

200.0 4

BACP/AT

100.0 -

0.0 e e e

-100.0

0.0 02 04 o.a 0.8 10

400.0

300.0 1

200.0 4

100.0 4

OACP/3M=

-100.0

0.0 02 0.4 0.8 o8 10

400.0

300.0

200.0 1

aACP/AC

100.0 1

0.0

-100.0

Q.0 02 0.4 o.e o.e 1.0

Fig.21 Q-A Pressure Difference Coefficlent Saensitivity Derivatives

2l m



!mm.m '

[

10.0
6.0
-
< 4
5 0.0
Q
<
-6.0] METHQOOD
o = Finite-Difference
& = Quasi-Anelytical
-10.0 . T T -
078 080 081 082 083 064 0856 086
Mach Number
(a}
20.0
5.0
10.0
% 5.0
g 0.0
2 .50
-10.0 METHOD
i o = FHnite-Difference
-16.04 & = Quasi-Analytical
-20.0 T T g 0 g T
079 080 081 08z 083 084 086 088
Mach Number
b)
«0.0
35.0
30.0
o 2601
o
S 20.0
a3
©  16.01
10.0 4 METHOD
a = Finite-Difference
5.0 & = Quasi-Analytica!
0.0 - : T - T -
079 ©OB0 08 082 083 0B84 085 096

Mach Number
{c)

Fig.22 Lift Coefficiant Sensitivity Derivatives



Determination of Aerodynamic Sensitivity | f
Coefficients Based on the Transonic Small F
Perturbation Formulation

H. M. Elbanna and L. A. Carlson

ullllﬂl I LII I LIIII\I\H uIHIHINI | LII\I u\l\lu

LII\"\

LIN I

Reprinted from

- Journal of Aircraft

:: Volume 27, Number 6, ,!qrigfégff.‘l’atges 507-515
RSFY  AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS. INC.
370 L'ENFANT PROMENADE. SW e WASHINGTON, DC 20024

R i

U



E

[

TR
il .

i

¢
I
i

ol

J. AIRCRAFT

507

Determination of Aerodynamic Sensitivity Coefficients
Based on the Transonic Small Perturbation Formulation

Hesham M. Elbanna* and Leland A. Carlsont
Texas A&M University, College Station, Texas 77843

The quasianalytical approach is developed (o compute airfoil acrodynamic sensitivity coefficieats in the
{ransonic and supersoaic flight regimes. faitial investigation verifies the feasibility of (his approach as applied

to the transoaic small perturbation residual expression. Results are compared (o those obtained by

the direct

(finite differcace) approach, and both methods ace evaluated (o determine (heir computational accuracies and
efficiencies. The quasianalytical approach is shown (o yield more accurate coefficients and is potentially more

AT L T T

OL. 27, NO. 6, JUNE 1990

efficicat and worth further investigation.
Nomenclature

C = maximum camber in fraction of chord
Cp = pressure coefficient
IM ,JM = grid dimensions
JB = row above airfoil
L = chordwise location of maximum camber
M = Mach number
R = residual expression
T = maximum thickness in fraction of chord
XD = design variable
f.g = Cartesian coordinate stretching functions
X,y = Cartesian coordinates
£ = computational variables
o = angle of attack
Y = ratio of specific heats
r = circulation
® = perturbation potential function
ACp  =Cp,-Cp,
Subscripts
o = freestream condition
b = body
p = pressure
u,l = upper, lower
T = trailing edge

Introduction

O VER the past few years, computational fluid dynamics
has evolved rapidly as a result of the immense advance-
ments in the computational field and the impact of the use of
computers on obtaining numerical solutions to complex prob-
lems. Accordingly, researchers are now capable of calculating
aerodynamic forces on wing-body-nacelle-empennage config-
urations. A next logical step would be to compute the sensitiv-
ity of these forces to configuration geometry.

In order to improve the design of transonic vehicles, design

" codes are being developed that use optimization techniques;
- and, in order to be successful, these codes require aecrodynamic

sensitivity coefficients, which are defined as the derivatives of
the aerodynamic f unctions with respect to the design variables.

Presented as Paper 89-0532 at the AIAA 27h Acrospace Sciences
Meceting, Reno, NV, Jan. 9-12; reccived March 15, 1989; revision
received Oct. 2, 1989. Copyright © 1989 by the American Institute of
Acronautics and Astronautics, lnc. All rights reserved.

*Graduate Research Assistant. Student Member AlAA.

{Professor, Acrospace Lnginecring. Associate Fellow ATAA.

Obviously, it is desirable that such sensitivity coefficients be
casily obtained. Consequently, the primary objective of this
effort is to investigate the feasibility. of using the quasi-
analytical method'? for calculating the aerodynamic sensitiv-
ity derivatives in the transonic and supersonic flight regimes.
As part of this work, the resulting sensitivity coefficients are
compared to those obtained from the finite difference ap-
proach. Finally, both methods are evaluated to determine their
computational accuracies and efficiencies.

In the transonic regime, a variety of flowfield solution meth-
ods exist. These range from full Navier-Stokes solvers to tran-
sonic small perturbation equation solvers. The complexity of
the equations that need to be solved depends upon the flow
phenomena in question and the objective of the analysis. Since
it is not the objective of this work to develop flowfield algo-
rithms, the present research uses the nonlinear transonic small
perturbation equation to determine and verify efficient meth-
ods for calculating the aerodynamic sensitivity derivatives. In

addition, only two-dimensional results will be presented in this
initial work.

Background

Most recently, sensitivity methodology has been successfully
used in structural design? and optimization programs’ primar-
ily to assess the effects of the variation of various fundamental
properties relative to the important physical design variables.
Moreover, researchers have developed and applied sensitivity
analysis for analytical model improvement and assessment of
design trends. In most cases, a predominant contributor to the
cost and time in the optimization procedures is the calcula-
tion of derivatives. For this reason, it is desirable in aero-
dynamic optimization to have efficient methods of determin-
ing the aerodynamic sensitivity coefficients and, wherever pos-
sible, to develop appropriate numerical methods for such
computations.

Currently, most methods for calculating transonic aero-
dynamic sensitivity coefficients are based upon the finite dif-
ference approximation to the derivatives. In this approach, a

- design variable is perturbed from its previous value, a new

complete solution is obtained, and the differences between the
new and the old solutions are used to obtain the sensitivity
coefficients. This direct, or brute force, technique has the
disadvantage of being potentially very computer intensive, es-
pecially if the governing equations are expensive to solve. In
addition, it is difficult to guarantee the accuracy of the deriva-
tives obtained by the finite difference method. Accordingly,
the need to eliminate these costly and repetitive analyses 1s the
primary motivation for the development of alternative, effi-
cient computational methods to determine the aerodynamic
sensitivity cocfficients.
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Problem Sta(emen(

‘formulated star(mg from the gcncnc quasxanalyucal approach
and manipulated according to the rules given in Appendix A of
Ref. 1 for the derivation of the general sensitivity equation.
This general sensitivity equation is then applied to the residual
expression R of the transonic small perturbation cquation,
which is a simple and adequate description of the nonlinear
phenomena occurring in the transonic regime. Although this
expression is nonlinear in the perturbation potential ¢, the
general sensitivity equation, Eq. (1), is linear with respect to
the unknown sensitivity (d¢/3XD;). It is to be noticed that the
practical implementation of the above step is not achieved
until the residual expression is approximated on a finite do-
main and the mathematical form of the problem rendered to
that of one in linear algebra. This discretization process is
explained in detail in Ref. 4. .

Thus, the quasianalytical method, as applied to the residual
expression of the transonic small perturbation equation, yields
the sensitivity equations,

dR de dR
[a_so] {aXD} {ml W
where B
R = (B, +Bap:}ose + 0y, =0 @
B =1-ML
w e By= —(y+ MY
v =p(x,y,XD) 3)

XD = set of design variables
XD; = ith design variable

subject to the airfoil boundary condition,

d
0, (x5,0) = [Gﬂb = F(x,XD) (4

the infinity boundary condition, for M, <1
e = —T0/(27),

G=nx/2, n=0,1234

or for M, >1

Yo =0, 8=nx/2, n=1,273
e, =0, @=nx/2, n=0,4 5)
and the Kutta condition
AP =0 (I' = Ap =const), Xre<x <o (6)

Equation (1) is discretized into a system of linear equations
to be solved for the unknown sensitivity vectors. In carrying
out this step, the expressions for both the right side vector and
the left side matrix are generated analytically. The solution of
this system is obtained efficiently by using either a direct or an
iterative procedurc that allows for multiple right_sides. This
approach is explained in the following section and has the
advantage that several unknown vectors can be obtained si-
multancously, each vector representing the sensitivity of the
potential ¢ with respect to some design variable XD;.

" At this stage, it is convenient to define the vector of desipn
variables

XD = [XD\.XD,,. . . XD,} M

H. M.AELBANA AND L. A. CARLSON "~
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and to exactly determine which variables influence the solution
of Eq. (2). In doing so, the relation between the sensitivity
coefficients corresponding to these variables and the form of
the optimization algorithm that utilizes this information needs
to be considered. Notice that the derivatives computed in this
study, namely, the first partial derivatives, ar¢c adequate for a
typical optimization routine if it werc to be applied to the
present two-dimensional problem. Notice also that some opti-
mization studies might require higher derivatives.

For the transonic flow problem, an appropriate choice of
the first design variable is the freestream Mach number (M.,).
This variable appears in the governing Eq. (2) and has an
important influence on the character of the equation via its
influence on local Mach number (for M < I, the equation is
elliptic, for M > 1, the equation is hyperbolic) and thus on the
nature of the solution. For this reason, it is desirable to have
M., as one of the design variables.

Next, it is appropriate to examine the boundary condition
given by Eq. (4). In the transonic small perturbation formula-
tion, the angle of attack (o) enters the problem through the
boundary condition and thus,

e '
el

For simplicity, the function F should be easxly differentiable

with respect to the design variables defining the airfoil geom- |

etry. This desirable feature simplifies the computation of the
right side term of the sensitivity equation. Therefore, it would
seem plausible to have a simple analytical expression for mod-
eling the upper and lower surfaces of the airfoil.

For the present studies, it was decided to limit consideration
to one basic airfoil section, namely the NACA four-digit sec-
tion, whose families of wing sections are obtained by com-
bining a mean line and a thickness distribution.’ The resultant
expressions possess the necessary features that suit the prob-
lem, mainly the concise description of the airfoil surfaces in
terms of several geometric design variables. The expressions
are as follows:

C(2Lx —xY)/L? £ 5T(0.296%Vx —0.126x
—0.3516x2+0.2843x7—0.1015x%), x <L
Yu=13 cltu-2Ly+2Lx —x?/(1 = LY )

+ 5T(0.2969Vx —0.126x —0.3516x?

+0.2843x3 - 0.1015x%),

x>L

Each of the quantities C, L, and T'is expressed as a fraction
of the chord. Differentiating Eq. (9) with respect 10 x and
substituting the result into Eq. (8) yields

Fu1=2C(L —x)/LL x 5T(0.14845/¥x —0.126

—0.7032x +0.8529x2 —0.406x3) — « (10)
where
!ox<L
(b oxs an
(a-Ly, x>L

Eq. (10) is a simple analytical expression in terms of the four
variables T, L, C, and «. Thus,

XD =|T, My, a, L, C] (12)

represents the complete set of design variables that define the
present two-dimensional airfoil sensitivity problem. Notice
that these variables are completely uncoupled; and, thus, the
sensitivity cquation can be solved independently with respect
to cach variable.®

B

|
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Mathematical Treatment and Solution Procedure
Problem Discretization

Equation (1) represents the general sensitivity equation ap-
plied to the residual R. Now, in order to solve the problem
numerically, Eq. (2) is formulated computationally on a finite
domain. This transformation is achieved by using a stretched
Cartesian grid that maps the infinite physical domain onto a
finitc computational grid. In this study, the grid used is based
upon a hyperbolic tangent transformation that places the outer
boundaries at infinity. Accordingly, the transformed residual
expression is given by

R =(B+B:yf o) fUwe) + 2(g0,), =0 (13)

This equation is solved numerically by an approximate factor-
ization scheme.? In finite-difference form, Eq. (13) can be
writlen as

Rij=[Bi+Bylwisrj—wi1,;/248)] i/ 88
X ["i.jfi+ w(@ierj—wij)— @2y — l)fi-—'/x(‘Pi,j —@i1j)
= —vij)icsloicrj— 'Pi—z.j)]

+ [g,-* w(ije1— i) — &i-wleij—wij- l)] g;/An? (14)

where

v;;=1 if point (i,j) is subsonic

v;; =0 if point (i,/) is supersonic

Eq. (14) is the discretized form of the residual at a general
point ({,/) in terms of ¢ values at surrounding points. Conse-
quently, R ati,jcan be viewed as a function of the ¢ values at
neighboring points; and, therefore, the differentiation of the
residual expression is straightforward.

Differentiation of the Residual
Rearranging Eq. (14) yields

Rij=cCioij + Qi1 joio1j + i jei; + CaPi1 jPi.j
2 2
t Cswicrjpion; t Cepio1jPi-2j t Croi ;" + Capigy

+ Copien; + Crowi-1; T Cuijer ¥ Cr20ij1 + Ci3pi-2
(15}

The coefficients ¢;,c3,...,¢; are functions only of the
stretching factors and of B, and B,, which are functions of
M... This fact is used when differentiating Eq. (15) with re-
spect to M., in order to obtain the right side (dR/IM,). It is
also necessary to consider the treatment of various types of
grid points and examine the effect on the general residual
expression. Several groups of points, such as those adjacent to
the airfoil, to the wake cut, and to infinity boundaries, need
special treatment. Accordingly, it is necessary to revise the
residual expression at these boundary points to include the
boundary conditions. The resulting updates are then used 10
modify the residual equation, Eq. (15), and to yield a set of
expressions, cach being valid for a group of boundary points.
The details of these operations and the expressions for the

~ cocfficients ¢,-¢; are found i1n Ref. 4.

In setung up the complete quasianalytical problem, the cir-
culation and 1ts dependence upon trailing-cdge potentials must
be carefully included. Since the circulation is determined by
the difference in potentials at the trailing edge,

U= oume —~ wite (16)
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or, by interpolating the trailing-edge values
T = T\[1.5(ere- 1.8 =Pire-1.75-1)
—0.5(erre - 1sm e v —rre - |.JB—2)]

+ Tz[ L. 5(ove 18 —Piress 1)

~0.5(piresn 1 — @rEs8-1)) a7
where

T, = [E(x=0.5)—£(lTE—l)]/A£ (18)

- T, =(1-T3] (19)

and since a branch cut extends from the trailing edge to down-
stream infinity, and trailing-edge potentials appear in the
residual expressions for points along the branch cut. In addi-
tion, since in the two-dimensional case the infinity boundary
conditions are proportional to the circulation, the trailing-edge
potentials also appear in the residual expressions at points
adjacent to the outer boundaries. Consequently, the resultant
matrix (3R /dyp), while banded, also contains many nonzero
elements far from the central band. Notice that the presence of
these elements greatly complicates the rapid and efficient solu-
tion of the sensitivity equation, Eq. (1).

The resulting residual expressions are differentiated analyti-
cally with respect to the potential ¢. Specifically, each equa-
tion is differentiated with respect to the potential at neighbor-
ing points and trailing-edge points. The latter enter as a résult
of the implicit nature of the circulation effects. These points
are denoted by the counters {ii,jj) and are given by

=D, (G0, Gj+1), (=2,)), (=17, (i+1.))
(ITE-1,JB-2), (ITE-1,JB—1), (ITE-1,JB)
(ITE~1,JB +1), (ITE,JB -2), (ITE,JB - 1)

(ITE,JB), (ITE,JB +1)

Solution about a Fixed Design Point

Once the residual relations are obtained, the actual coeffi-
cients are assembled by evaluating the appropriate analytical
expressions using a flowfield solution obtained from Eq. (2)
for a given set of conditions (i.e., about a fixed design point).
Similarly, the right sides are evaluated by differentiating the
analytical expressions for the residual with respect to each
design variable. Again, the details and results of these steps are
found in Ref. 4.

The end result is that the coefficient matrix (3R; ;/3v;; j;) is
of size (IM —2) x (JM —2) x (IM —2) x (JM —2) for a general
(/M x JM) grid. This system is large, of block structure, diag-
onally dominant, and sparse and, while banded, also contains
many nonzero elements far from the central band. As a result
of this size and structure, it is obvious that a reasonably fast
scheme for solving Eq. (1) is needed.

Currently, it is very difficult (o single out an optimum rou-
tine that handles a general, large, sparse system of linear cqua-
tions for which the coefficient matrix is unsymmetric. This is
because, unlike the theory of symmetric matrices, the theory of
general unsymmetric matrices is more involved and has yet to
be developed. Since research in the above areas is currently
very active and specialized, any attempt to cover these topics
in detail would be laborious. For this reason, it was decided to
usc a few general but not necessarily the most cfficient ap-
proaches that were available in the literature and that could be
integrated into the sensitivity codes with adjustments. This
approach would allow an evaluation of the overall cost in-
volved in solving the current two-dimensional problem.
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The first solver is based on standard Gaussian elimination
with partial pivoting and full storage. The second is based on
triangular decomposition® and uses a compact storage scheme
that avoids handling the zero entries and therefore should be
more efficient than standard Gaussian elimination. The third
solver is based on a Gauss-Scidel iterative scheme® and was not
optimized for speed (through the choice of optimum accelera-
tion paramecters) but uses sparse matrix technology in proces-
sing only the nonzero elements. The fourth and last solver used
is based on the conjugate gradient method.!® Handling the
sparsity pattern for the third and fourth solvers is achieved by
assembling the symbolic part of the coefficient matrix only
once f{or a given grid size and given freestrcam (subsonic vs
supersonic). The resultant structure is then stored on a disk
file. Before the numerical part is executed, the symbolic infor-
mation is read into the code and used directly to assemble the
new matrix. This procedure is followed to reduce the time
consumed in assembling the coefficient matrix. Notice also
that in the Gauss-Secidel and conjugate-gradient solvers that
the error tolerances for the coefficients involving maximum
thickness, freestream Mach number, and location of maxi-
mum camber were 1.E-06, while those on angle of attack and
maximum camber were 1.E-04. -

Once the sensitivities of the potentials, and thus the Cp
distribution, to the design variables are known, the sensitivity
of the Iift coefficients to the design variables can be easily
computed. To minimize errors, these coefficients are com-
puted using

Cp = 2T = Apu1e —¥i18) (20)
and hence,
BC,_ /aXD, = 2(3<p,,rE/BXDi - a&PlTE/aXD;) (Zl)

Finally, all methods used for computing the derivatives are
compared to the finite-difference approach, and the results are

Table A:ccur:ky orfﬁﬁuasianaly(ical method
for computing lift coefficient seasitivity derivatives
for NACA 1406, GRID 81x20

XD; Mecthod* Me=02 Mu=08 Mu=12
T FD 0.0044 0.5232 —0.2949
QA 0.0044 0.5447  —0.3376

Mo FD 0.0471 0.9708 1.0235
QA 0.0470 0.9905  —0.0703

o FD 6.1385 10.5229 4.8758
QA 6.1386 10.5229 4.8726

C FD 9.9380 19.5767 0.7695
QA 9.9381 18.6154 0.7356

L FD 0.0696 0.1499  —0.0348
QA 0.0693 0.1496  —0.0349

*FD. finite difference. QA, quasianalytical.
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presented and evaluated to determine the computational accu-
racy and efficiency of each method.

Test Cases

In this study, the quasianalytical method has been used to
determine the acrodynamic sensitivity cocfficients at two
freestream Mach number$ (M., = 0.2, 0.8) for the NACA 1406
airfoil at 1-deg angle of attack. Results were also obtained* !
for a supersonic case at M, = 1.2. Notice that further studies
are needed to examine the results for a wider range of design
parameter variation.

In the following, two types of results will be presented.
The first will be plots of Cp vs chord for the three cho-
sen Mach numbers. The second will be the corresponding
plots of (dCp/3T), (3Cp/3IM.), (3Cp/dca), (3Cp/3C), and
(dCp/3L) for the upper and lower surfaces and plots of
(dACp/3T), ..., etc., involving the difference, all will be ob-
tained by the quasianalytical method. In addition, all of the
figures will also contain results obtained using the direct (finite
difference) approach in which each design variable was indi-
vidually perturbed by a small amount, typically 0.001, and a

new flowfield solution obtained. Then the sensitivities were
computed using ACp/A XD and are shown via dashed lines. In
many cases, the lines are coincident with the quasianalytical
results and cannot be observed. Table 1 compares results ob-
tained by the two methods, and in most cases the agreement is
within 1%.

In all cases, an 81 x 20 stretched Cartesian grid was utilized.
While finer grid studies are needed, they were not performed
as part of this initial study. In addition, for these studies, the
flowfield was normally computed using double precision arith-
metic and the maximum residual reduced eight orders of mag-
nitude. It was felt that this level of convergence was necessary
in order to accurately evaluate sensitivity coefficients using a
finite-difference approach, although such convergence may
not be required in the flowfield solver for the quasi-analytical
method.
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airfoil theory, the upper and lower surface values are essen-
. tially identical, and the difference is very small everywhere.
Also shown on the same figure (and on subsequent figures) by
the dashed line is the result obtained by using the finite-differ-
ence approach; and as can be seen, the agreement between the
two approaches is excellent.

The sensitivity of pressure to freestream Mach number is
plotted on Figs. 3a and 3b. It is noticed that while the profiles
for the upper and lower surfaces are similar, they are not equal
in magnitude, indicating a nonlinear variation with Mach
number as predicted by simple Prandt!-Glauert theory. How-
ever, as indicated by the results plotied on Fig. 3b, the magni-
tudes for this subsonic Mach number are very low.

The sensitivity of the pressure coefficients 10 angle of attack

are depicted for this case in Figs. 4a and 4b. As expected from
linear thin airfoil theory, the upper and lower surface curves
are essentially equal in magnitude but of opposite sign. Not
surprisingly, the sensitivity of the delta Cp variation, Fig. 4b,
wo | has the shape of the pressure differénce curve for a flat plate
at angle of attack; and its magnitude, parhcularly near the
leading edge, is quite large.
oo | On Figs. 5a and 5b is plotted the sensitivity of the pressure
coefficient to the amount of maximum camber. Since camber
contributes to lift, it is expected from the thin airfoil theory
that these values should be “‘equal but opposite in sign’ for
the upper and lower surfaces. In addition, the pressure differ-
ence curve has the correct shape for that associated with a 14
mean line with the peak occurring at 30% chord® and has a
magnitude comparable 10 those for the (3Cp/da) curves.

Finally, the sensitivity of pressure to the location of the
maximum camber point is portrayed in Figs. 6a and 6b and, to
say the least, the results are interesting. Since maximum cam-
ber location affects the camber profile and hence lift, the equal
and opposite behavior of the upper and lower surface coeffi-
cients is expected. In addition, the pressure difference sensitiv-
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Results and Discussion

Subsonic Case - M, =0.2

"

Inttial studies concentrated on subsonic cases since at least
approximate results would be known from thin airfoil theory.®
Figure 1| shows the pressure distribution for the NACA 1406
airfoil, while Figs. 2a and 2b show the sensitivity of the pres-
sure to thickness for the same aicfoil. As expected from thin

ity is primarily negative forward of the point of maximum
camber and positive aft of it. This result indicates that if the
location of maximum camber were moved rearward slightly
(i.e., a positive Al), that lift would be decreased on the for-

ward portion of the airfoil and increased on the aft portion of
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the airfoil, which is in agreement with the results presented in
Ref. S.

Transonic Case — Mo =0.8

At M. =0.8, the flow about the NACA 1406 airfoil has a
strong shock at 40% chord, see Fig. 7, and the lower surface
is entirely subcritical. As a consequence, the variation with

chord of the sensitivity coefficients is considerably different

than in the subsonic case.

Figs. 8a and 8b show the sensitivity of pressure to the max-
imum thickness; and while the lower surface profile is simi-
lar to that obtained at subsonic conditions, the upper surface
curve and the pressure difference coefficient plot show the
effect of the upper surface shock wave. The large peak on the
curves corresponds to the location of the shock wave and
“indicates that the shock-wave location is very sensitive to max-
imum thickness. Notice on Figs. 8a and 8b the exccllent agree-
ment of the quasianalytical results indicated by the solid lines
with those obtained wusing the, finite-difference approach
{dashed Tines). '
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Fig. 8 Sénsilivity of pressuré to maximum thickness, M2 =0.8..

The results for (dCp/dM,), which are shown on Figs. 9a
and 9b, are similar. The lower surface curve is typical of a
subsonic flow, whereas the upper surface and the pressurc
difference coefficients reflect the presence of the upper surface
shock wave. Similar comments can be made for the remaining
design variable coefficients, which are plotted on Figs. 10, 11,
and 12.

Examination of the curves in the vicinity of the shock wave
location indicates that the pressure sensitivity and indirectly
the shock wave location is about equally influenced by the
maximum thickness, freestream Mach number, and angle of
attack. However, in comparison it is relatively insensitive to
the location of maximum camber; but, perhaps surprisingly
50, the pressure is twice as sensitive to the amount of maximum
camber as it is to the other design variables. 1t should also be
noticed that the lift is most sensitive 10 angle of attack and to
maximum camber.

In addition, Fig. 11 shows a dlscrcpancy between the results
obtained by the direct approach and those obtained through
the quasianalytical method. It will be shown in the follow-
ing section that this discrepancy.is rel to the ‘thoice of the .
step size used in computing the finite-difference solution, thus,
revealing a Slgmrcam deficiency in computmg the sensitiv-
ity derivatives in nonlincar regimes via the f{inite-difference
approach.

Time Comparisons

Obviously, in the development of the quasianalytical
method, it was hoped that not only would this approach yield
accurate values for the acrodynamic sensitivity coefficients,
but also that it would be more cfficient than the brute-force,
finite-difference approach. Table 2 presents some comparisons
concerning the amount of computational effort required to
obtain solutions by the two approaches including results for
the supersonic case. ! o

In comparing the valucs, several items should be kept in
mind. First, it has been assumed that the finite-difference ap-
proach will require six_independent solutions. In practice, it

might be possible to start cach finite-difference solution from
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a previous solution and, thus, decrease the time to conver-
gence. However, to be accurate, the finite-difference approach
will probably require double precision and will have to be
extremely well converged (i.e., 1.E-08). Nevertheless, the val-
ues for the finite-difference approach probably should be

efficient than direct methods if the derivatives for the current
two-dimensional problem were sought about some general de-
“sign point. However, if the objective is to incorporate the
sensitivity derivatives into an optimization loop (i.e., to use the
derivatives in a continuation problem), then, a good initial

E viewed as maximum values. guess (which in that case would be available) would enhance

-— Second, the methods used for obtaining the sensitivity coef- convergence, and the overall cost of computing the derivatives
ficients have not been optimized and, as mentioned earlier, using iterative methods might be reduced. These points should

. may not even be optimum; and the flowfield solution required be taken into consideration when a sensitivity study is to be

E3 for the quasianalytical approach may not need double preci- integrated into an optimization procedure.

L sion and may not have 1o be as tightly converged. Thus, the

values shown for the quasianalytical approach should also be
viewed as maximum values.

In spite of these limilations, results obtained by direct meth-
ods do indicate that the quasianalytical method is more com-
putationally efficient at supersonic conditions and potentially
efficient at transonic conditions than the brute-force, finite-
difference approach.

Notice that in this study, the initial guess used in computing
the sensitivity derivatives via iterative methods was arbitrarily
chosen as the zero vector. In addition, time comparisons pre-
sented in Table 2 show that iterative methods arc in genceral less

Additional Test Cases

The first group of cases are carried out to investigate the
performance of the NACA 1406 airfoil for a range of Mach
numbers from 0.79 to 0.86 in increments of 0.01. As shown in
Fig. 13, this range of transonic Mach numbers encompasses
the development of the shock wave on the upper surface of the
airfoil. Also, as shown on Figs. 14 and 15 for the cases involv-
ing thickness, Mach number, and maximum camber, the
quasianalytical derivatives arce in the vicinity of the shock wave
frequently different from those obtained by the finite-differ-
ence approach. This discrepancy raises two questions—what is
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Table 2 Time* comparisons for obtaining
seasilivity coefficieats for five design variables
for NACA 1406, GRID $1x 20
Mcthod?® ==0.2 M.=08 Mo=1.2
FD 1.0000 1.0000 1.0000
D 2.5187 0.9962 0.3929
GE 2.4089 0.9927 0.5165
GS 0.9971 1.5410 _
CG 35.2264 10.6199 —_
*Alt CPU times were normalized by the time taken to com-
putc FD derivatives.
*FD. finiie difference; TD, triangular decomposition;
GE, Gauss chimination; GS, Gauss-Seidel; CG, conjugate
gradient.
Table3 Effect of changing step size delta on
finite-difference lift coefficient sensitivity derivatives
for NACA 1406, GRID 81x20, M. =0.84
Delta XD; XD;=T XDi=Mx XD;=C
1.E-03 7.7603 7.8715 24.0912
1.E-04 —0.8493 —0.6340 83.9853
1.E-05 —0.8497 —-0.6364 14.7719
1.E-06 —0.8498 —0.6366 14.7695
QA? —0.8498 -0.6367 14.7692
"QA, quasianalytical lift coefficient sensitivity derivatives.
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Fig. 12 Seasitivity of pressure (o location of maximum camber,
M. =038.

the cause of the disagreement and which set of derivatives is
more accurate? Examination of the variation of the integrated
coefficient, 9CL/3XD; with M, which is portrayed on Fig.
16, shows that the quasianalytical résul(s are smooth and fol-
low a definite trend, whereas the finite-difference values are at
best *““discontinuous.” Consequently, it is concluded that the
finite-difference results are less accurate,

In order to observe the performance of the finite-difference
approach in the transonic regime, it is necessary to cxamine the
effect of changing the step size (delta of the design variable) on
the computed derivatives. Four different values for the step
stze (1.E-03, 1.E-04, [.E-05, and 1.F-06) were chosen and
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applied to the NACA 1406 at a Mach number of 0.84. Exam-
ination of this second group of results (sec Table 3) show that
as the step size is decreased, the finite-difference lift coefficient
sensitivity derivatives approach the values computed by the
quasianalytical method. However, in some cases, for small
A XD, values, oscillations in the pressure coefficient sensitivity
derivatives have been observed depending upon the machine

used and the method of storing and retrieving the data. These

oscillations combined with the difficulty of properly choosing
a suitable finite-difference AXD; a priori indicates that the
finite-differcnce approach is probably not a practical method
ol efficiently computing sensitivity coefficients. On the other
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hand, the present results demonstrate that the quasianalytical
method can be used accurately to obtain such coefficients in
the transonic flight regime.

Conclusion

Based upon these investigations and results, it is concluded
that the quasianalytical method is a feasible approach for ac-
curately obtaining transonic aerodynamic sensitivity coeffi-
cients in two dimensions. The results obtained from the quasi-
analytical method are almost identical to those obtained by the
brute-force (finite-difference) technique. Furthermore, the
study indicates that the computation of sensitivity derivatives
at transonic conditions is generally more accurate using the
quasianalytical direct solver approach than the finite-differ-
ence approach. In addition, the quasianalytical method is
more efficient at supersonic Mach numbers and is potentially
more efficient than the brute-force approach at transonic
speeds. However, further studies 1o determine the effects of
grid refinement and to examine the results over a wider range
of design parameter variation are needed.
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Abstract

The quasianalytical approach is applied to the
three-dimensional full potential equation to com-
pute wing aerodynamic sensitivity coefficients in
the transonic regime. Symbolic manipulation is
used to reduce the effort associated with obtain-
ing the sensitivity equations, and the large sen-
sitivity system is solved using "state of the art”
routines. Results are compared to those obtained
by the direct finite difference approach and both
methods are evaluated to determine their compu-
tational accuracy and efficiency. The quasianalyt-
ical approach is shown to be accurate and efficient
for large aerodynamic systems.

Nomenclature

C Maximum camber in fraction of chord
CG Conjugate gradient
Cl Local lift coefficient
CL Total lift coefficient
Cp Pressure coefficient

c(y)  Chord function
FD Finite difference
GMRESGeneralized minimum residual

L Chordwise location of maximum camber

M Local Mach number M; ;x

M. Cutoff Mach number 0.94 < M £1.0

M Freestream Mach number

P Freestream pressure, nondimensionalized
by f2v/(r + VP

P Stagnation pressure

QA Quasianalytical

goo Freestream velocity, nondimensionalized
by V©

T Maximum thickness in fraction of chord

Ti.a  Twist angles

U,V,W Contravariant velocity components
| Critical speed

x,y,2  Physical grid system

X,Y,Z Computational coordinates

*“Graduate Research Asst.

*= Professor, Aerospace Engr., Associate Fellow ATAA

Copyright ¢ 1992 by the American Institute of
Aeronautics and Astronautics, Inc. All rights re-

served.

xle(y) Leading edge function

XLy  X-Coordinate of leading edge corner point
XTr X-Coordinate of trailing edge corner point
Yr Y-Coordinate of wing tip

XD Vector of design variables

p Density, nondimensionalized by po

Poo Freestream density, nondimensionalized
by po

Stagnation density

Retarded density coefficient

First order backward difference operator
Switching function

Angle of attack

Ratio of specific heats

Reduced potential function

Full potential function

Circulation

©
@
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Introduction

To design transonic vehicles using optimiza-

tion techniques requires aecrodynamic gensitivity

coefficients, which are defined as the derivatives

of the aerodynamic functions with respect to the

design variables. In most cases, the main con-

tributor to the optimization effort is the calcu-

lation of these derivatives; and, thus, it is de-

sirable to have numerical methods which easily,

efficiently, and accurately determine these coeffi-

cients for large complex problems. At prcsent“‘,

there are two primary approaches for calculating
transonic aerodynamic sensitivity derivatives. In
the first approach, the sensitivities are calculated
by perturbing a design variable from its previous
value, a new complete solution is obtained, and the
differences between the new and the old solutions
are used to obtain the sensitivity derivatives. This
brute force direct technique is computer intensive
for complex governing equations that include a
large number of design variables. In the second
approach, termed the quasianalytical method, the
sensitivities are obtained by solving a large sparse
system of algebraic sensitivity equations in which
the Jacobian matrix and right-hand-side vectors
are obtained by differentiating the discretized form
of the governing equations. The differentiations,
while being staightforward in principle, are usually
lengthy and tedious. However, once obtained, the

PRBCEDING PAGE BLANK NOT FILMED

L

LD

1
i



w

r r

I 1)y
[

]
&

m
b

E 3

ol L

C

LILLEN

r

BT

oo

sensitivity equations can be very efficient and ac-
curate for computing large numbers of sensitivity
coeflicients.

In the first phase of this research?, the quasi-
analytical approach was developed and applied
to two-dimensional airfoils. Based upon these
proof-of-concept investigations, it was concluded
that the quasianalytical method was a feasible ap-
proach for accurately obtaining transonic aerody-
namic sensitivity derivatives in two dimensions,
and was often more accurate and efficient than
the finite difference method as the number of de-
sign variables was increased. Further, the alge-
braic forms of the matrix elements in the two-
dimensional sensitivity equations were determined
by hand, which involved extensive effort associated
with differentiating the discretized residual with
respect to the various design variables and the de-
pendent unknowns. Today, such operations could
be carried out using Symbolic Manipulation Pro-
grams (SMs)’, such as MACSYMA®®, but present
SMs are incapable of automatically performing
all the necessary simplification, combinations, and
cancellations of terms associated with algorithmic
simplification of expressions. Consequently, the
user must be familiar with the commands avail-
able for the organization of expressions and con-
duct various trials and experiments to identify a
symbolic procedure which is efficient. As a result
of these two-dimensional studies, it was decided
to extend the quasianalytical approach to three
dimensions and to investigate the use of Symbolic
Manipulation Programs (SMs)'®'' for obtaining
the matrix elements.

For this extended effort, it was decided
to use for the flow solver a modified version
of the three-dimensional direct-inverse analysis-
design tranzonic full potential fully conservative
code, ZEBRA!""'S. The full potential equation
was selected because it can be solved rapidly and
is robust, and accurate for engineering purposes'®
Further, it can be formulated using a stretched
Cartesian grid system that can be rapidly gener-
ated and which has simple metrics. Also, such a
grid permits the variation of several design param-
eters without changing the physical or computa-
tional grids. For the present work, the analysis
portions of ZEBRA have been rearranged and un-
needed portions deleted. In addition, the capabil-
ity of calculating the sensitivity derivatives via the
finite difference approach has been added.

2

Problem Statement

Application of the quasianalytical method to
the full potential equa.tlon yields the sensitivity
equation

B8R, ;& 8¢iijjkk | _ Rk 1
Bdii jjkk 8XD -\ 8xD ™

where the residual expression in the computational
plane in terms of backward differences is

R1,1,k = SX( )‘+l/2,],k + EY( )I,J+l/2 k

pW
+32(£_',—)i,j,k+x/: (2)

The retarded density coeflicients in Eq.(2) are

Pivrjagk = (1~ Vig1/2,5k)Pi41/2,5.k

+Vit1/3,5.kPi-1/2,5.k (3)
_ 1
Pij+1/ak = ;(ﬂ-‘.j.k + Bij+1,k) (4)
B 1
Pijiksrys = F(Pigk + Pijksr) (5)

where

¥ - _l_
bk = [1 - = (Uex + Vay + Wez)| 7 (@)
e Y +1 'Juk

and

M.
am 0l

Gk

vi j,k = minfl, maz(l —

In Eq.(7), the Mach number is obtained from

1 1 1
—-(T)“’ ! —(1+7 Ml )77 (8)
p'v]v
and thus
M. = 2 1—7
1,3,k = -1 (p"'j‘k —-1) (9)
where p; ; x is nondimensionalized by po. From
Eqs.(7) and (9),
o, M;;r <1
Vij k= 1 — LLrll__L, A{lj E>1 (10)
i J.h -1 e
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The contravariant velocities are

U=(X}+X)ex + Xy¥y (11)
V= Xydx + ¥y (12)
W =2%gz (13)

where the full potential is split into perturbation
and freestream components as

@i jk = bijk + XgooCos(a) + Zqoo Sin(a)  (14)

Note that the angle of attack enters the formula-
tion thru the above equation. Also note that the
physical grid system (x,y,2) is transformed into the
wing aligned computational grid (X,Y,Z) by

X(zy) = ?;cf—;;‘—”) (15)
Y=y (16)
Z(z)=1z2 (17

The boundary conditions are the surface
boundary condition,
8z

8z
W= Ua_X— + V—57 (18)

the Kutta condition along the wing semispan,

r=Aa¢, zrg<z<Loo® (19)

and the far field boundary condition. Additional
conditions include updating the potential on the
downstream boundary (¢s = 0) and implementing
the wing symmetry condition by setting V = 0.

Once the unknown sensitivities 8¢/8X D are
obtained, the sensitivities of the pressure coeffi-
cient, Cp, with respect to the design variables can
be computed. From the pressure coefficient ex-
pression

P - Pxo

2 e

Cp =
substitution for the pressure using the isentropic
relation yields

_ O+ /v

po (p7 = p3) (21)

Cp

where

7—1 T
p= [l— I(U‘I’X’*'V{’Y“'W(’Z)] (22)

v+

and where the freestre-am values goo, poo, and Peo
in Eqs.(20) and (21) are

T e SV
PN Sl W IV(C A
Poo = (1 Py T 90l (24)
+1
Peo = lz_on 7 (25)

Design Variables

Design variables can be classified according
to whether or not they are coupled. Uncoupled
design variables are termed basic variables, which
are the independent variables that influence the
solution of a problem; while coupled design vari-
ables are termed nonbasic and are obtained from
the basic design variables usually using simple al-
gebraic expressions. For example, in the current
problem, wing planform sweepback angles are non-
basic design variables which are obtained knowing
the basic variables or the coordinates of the cor-
ner points of the wing. Other examples of nonbasic
variables are the wing semi-span, aspect ratio, and
taper ratio.

The basic design variables for the current
problem are:

(a) Freestream design variables: These include
the freestream Mach number and the angle of
attack. The Mach number enters the formu-
lation thru Eq.(23) while the angle of attack
shows up in Eq.(14). ' '

(b) Cross section design variables: These include
variables that define the airfoil section such as
maximum thickness, maximum camber, and
location of maximum camber for a NACA
four-digit section and, variables that define
each spanwise section such as geometric twist.
For the current problem, these variables en-
ter the problem via the boundary condition,
Eq.(18). . - e

(c) Planform design variables: These variables
define the geometry of the wing planform. In
this study, the coordinates of the wing cor-
ner points are used as the basic design varl-
ables. Knowing the sensitivities with respect
to these basic variables allows evaluation of
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the derivatives with respect to the nonba-
sic variables. The coordinates of the cor-
ner points enter the current formulation via
Eq.(15).
Thus, for the current three-dimensional problem,
the vector of design variables consists of twelve
variables and six derived variables and is given by,

XD = [M,a,T,C, LT, T, T5, T, X Ly X Tr. Yr

(26)
These variables are used in obtaining the right
hand side vectors in Eq.(1).

Symbolic and Numerical Treatment

The basic approach used to symbolically dif-
ferentiate the residual expression was to treat the
main expression in terms of smaller subexpres-
sions, each of which was examined in terms of
its constituents. This process was extended until
the final subexpressions included the appropriate
derivative argument, the reduced potential or the
design variables, in a simple functional form. The
best method to obtain these subexpressions was to
consider the governing equation and the involved
intermediate expressions in the original form given
in Egs.(2)-(14). This splitting or nesting of expres-
sions with various intermediate dependencies de-
clared in advance allowed each subexpression to be
handled efficiently by the symbolic manipulator.
This usage of the chain rule of differentiation to-
gether with MACSYMA’s ability to keep track of
various equations resulted in an efficient scheme of
analytical differentiation. It is noted that an early
attempt to obtain the derivatives from a residual
expressed as an explicit function of the reduced
potential thru appropriate substitutions, Eq.(14)
into (11), (12) and (13) up to Eq.(2), proved to
be a poor strategy since the rapid increase in ex-
pression size eventually caused MACSYMA to en-
counter limitations on memory and manipulative
ability. The experience gained from this attempt,
however, turned out to be useful in identifying the
capabilities and limitations of various MACSYMA
commands and assisted in the development of fur-
ther symbolic aspects associated with the project.

During this study, various MACSYMA codes
have been developed to assist in the application
of the quasianalytical method. The first code,
termed RMD.MAGC, finds all residual reduced po-
tential dependencies. This code is needed prior to
carrying out the analytical differentiation of the
residual, Eq.(2), with respect to the reduced po-
tential function. Notice that the latter function

shows up in Eq.(14), where the details of the de-
pendence of the residual expression on this func-
tion are not obvious, since intermediate expres-
sions Eqs.(3) to (13) are involved. As mentioned
carlier, handling each intermediate subexpression
separately simplifies the operations involved. The
result of this code is a file which includes various
intermediate dependencies obtained in the form
of lists. The second code termed RMDER.MAC,
uses these lists and starts the symbolic differen-
tiation process in order to obtain the Jacobian
and right hand side vectors. The result of this
lengthy code is a large FORTRAN segment that
includes three subroutines and is about 15000
lines long. As mentioned in the following section,
this segment which is the heart of the quasian-
alytical method, is linked into the quasianalyti-
cal sensitivity driver. The third MACSYMA code
is termed RCP.MAC, and generates FORTRAN
source code for the derivatives of the pressure co-
efficient, Eqs.(21) to (25), with respect to the vec-
tor of design variables. This code uses the reduced
potential sensitivity derivatives as input arrays.
This segment of FORTRAN source code is also
linked with the segment obtained from the second
MACSYMA code. Finally, the fourth MACSYMA
code is termed RESID.MAC and was created dur-
ing debugging operations to test the evaluation of
various residual terms. This program was very
helpful in revealing logic and procedure errors in
RMDER.MAC. Finally, it is important to empha-
size that each of the above MACSYMA codes is
executed only once followed by a transfer of the re-
sulting FORTRAN segments to the QA sensitivity
driver.

Direct solvers that were previously used in the
two-dimensional problem? (i.e. tridiagonal decom-
position and full Gaussian elimination) failed on
the three-dimensional problem due to limitations
on memory; while the iterative routines developed
earlier worked properly but were very slow. How-
ever, library routines'® available on the IBM-3090
were extremely efficient with respect to memory
and execution speed; and two scientific library
solvers based on the iterative conjugate gradient
method and the generalized minimum residual ap-
proach have been used with success. For these
solvers, the exact amount of storage needed de-
pends on the sparsity and band width of the Ja-
cobian matrix which in turn depends on the size
of the three-dimensional grid. The present grid of
45*30*16 yields a large, sparse, banded, and un-
symmetric Jacobian matrix of about 17500*17500



that is less than one percent dense. An incomplete
LU factorization is applied only once to this large
matrix, and the sensitivity equations are solved
using the iterative CG or GMRES methods*®!"'*.
Following the factorization of the Jacobian matrix,
back substitution using the known right hand side
vectors generates the unknown sensitivity deriva-
tives with a trivial computational cost. Recall that
one crucial objective of this study is to exploit the
efficiency of the QA method as the number of de-
sign variables is increased.

Program Structurc

The analysis-sensitivity program consists of

the modified analysis program, ZEBRA, the finite
difference sensitivity driver, and the quasianalyti-
cal sensitivity driver. Execution of the main code
starts with an analysis run followed by sensitivity
derivative calculations for each point in the flow-
field. These calculations are carried out either us-
ing the FD method or the QA approach. The FD
portion of the code uses two consecutive ZEBRA
runs to calculate a vector of sensitivity derivatives.
This brute force technique, while strmght -forward,
has the disadvantage of being expensive to im-
plement and exhibits problems when single pre-
cision variables are used. The QA driver consists
of two main parts. The first part assembles the
Jacobian matrix and the right-hand-side vectors.
This assembly is achieved using calls to the large
code segment generated via MACSYMA. This sec-
tion of subroutines, as explained earlier, contains
source code for the elements of the Jacobian ma-
trix and right-hand-side vectors. Following the
numerical assembly step, the second part of the
sensitivity driver solves the sensitivity equations
using one of the available linear sparse solvers and
yields the unknown sensitivity vectors. Finally,
the resulting sensitivity derivatives 8¢/86XD are
processed to obtain the pressure coefficient sensi-
tivity derivatives, 8Cp/8X D, at twenty-five chord-
wise locations at each of the twenty wing semis-
pan stations. This process is performed using the
subroutines generated via RCP.MAC, the MAC-
SYMA file used to symbolically differentiate the
the pressure coefficient with respect to the reduced
potential.

Test Cases

The wing configuration considered is that for
the four cornered ONERA M6 wing planform*~*
with NACA 1406 airfoil sections. For this configu-
ration, four test cases have been successfully con-

ducted. The first case is subcritical at a freestream
Mach number of 0.8 and an angle of attack of one
degree. The second and third cases are supercrit-
ical at Mach number of 0.84 and 0.88 respectively
and an angle of attack of three degrees, while the
fourth case is supersonic at a Mach number of 1.2
and an angle of attack of three degrees. Due to
space limitations, only results for the second case
(Mo = 0.84,a = 3deg) are presented in this pa-
per. This case is challenging since it includes a
subcritical lower surface flow and exhibits an up-
per surface shock wave located at 70% chord at
the root to 10% chord at the tip that increases in
strength from the root to a point near the wing
tip. Thus, results for this case are believed suffi-
cient to demonstrate the capabxlmes of the present
analysis-sensitivity program.- - -~ -

In the above cases, a coarse-medium grid se-
quence was used in computing the analysis infor-
mation in order to speed up convergence. For
the FD method, each design variable was indi-
vidually perturbed by a small amount, typically
1+10~%, and a new flowfield solution obtained. In
all cases, double precision arithmetic was utilized
and the residual reduced eight orders of magni-
tude. In addition, the sensitivity information was
computed by restarting each of the perturbed de-
sign states from the coarse grid then proceeding
to the medium grid. Different strategies for grid
sequcncing together with va.rious choices of a suit-
up the FD approach. In the QA method, as men-
tioned earlier, the sensitivity equation was set up
with multiple right hand sides (the current vector
of design variables, Eq.(26), includes twelve basic
parameters) and was solved using the CG routine.

Results and Discussion

For the subecritical test case, the results ob-
tained by the quasianalytical method were found
to be in excellent agreement thh results obtained
via the finite difference method. In addition, the
results followed the trend of the two—dnmcnswnal
study?. L

Typical results for the chordwise variation of
the pressure coefficient sensitivity derivatives at
the Mo = 0.84,0 = 3deg supercntlcal case are
shown on Figs. 1 and 2 for a mldspan station.
Also displayed next to the legend in each case
are the integrated coefficients 8Ci/dX D;. As ex-
pected, the sensitivity derivative profiles for the
lower surface are typical of subcritical flow?; and
the upper surface results exhibit large variations
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in the vicinity of the shock wave. The latter re-
flect the influence on the aerodynamic coefficients
of the sensitivity of the upper surface shock wave
location to various design parameters. In addi-
tion, a comparison of the spanwise distribution of
the integrated coefficients, 8C;/3X D;, is shown on
Fig. 3; and in general these section values are
smaller in magnitude than corresponding values
for the two-dimensional problem?. As can be seen
on Figs. 1-2, the agreement between the FD and
QA results is excellent, indicating that accurate
results can be obtained using the quasianalytical
approch for three-dimensional transonic cases.

Since both the FD and QA methods yield sim-
ilar results, the question arises as to which is the
least expensive. Current results obtained with the
CG solver indicate that the QA method is com-
putationally more efficient than the brute-force,
finite difference approach. A representative CPU
time ratio QA/FD of 0.46 was obtained for the
above case with twelve design variables. It is rec-
ognized, however, that the potential exists for re-
ducing the cost associated with the FD method.
For example, the perturbed runs could be exe-
cuted directly on the medium grid starting with
the design point solution obtained on the coarse
grid. Likewise, the QA method could be improved
by speeding up the evaluation of the Jacobian and
right hand sides and/or using various options re-
lated to the library solver. Therefore, the stated
time ratio should only be considered as an esti-
mate for comparing the two methods.

One application of sensitivity derivatives is
solution prediction. Fig. 4 compares the pres-
sure coefficent distributions predicted at midspan
using a first order Taylor series expansion about
a design point with the actual pressure coefficient
variation. The predicted Cp’s are calculated using

ac
Cpprcdictcd = deetign + 5X——£;AXDl' (z7)

where the 8Cp/8X D; values where obtained from
the QA approach and AXD; = (0.005,0.1,0.005,
0.001,0.1,0.1) for (Meo,a, T, C, L, Th) respectively.

As can be seen, the agreement between the
two distributions is very good, which indicates
that the sensitivity derivatives calculated using
the QA method can indeed be used in prediction.
As mentioned earlier, another important applica-
tion of sensitivity derivatives is in optimization
routines. This application, however, is beyond the
scope of the current project.

Conclusion and Recommendations

Based upon the above results, it is concluded
that the quasianalytical method is a feasible and
efficient approach for accurately obtaining tran-
sonic aerodynamic sensitivity coefficients in three
dimensions. In addition, use of the symbolic ma-
nipulation package, MACSYMA, to carry out the
symbolic evaluation of the elements of the sensi-
tivity equations is crucial in this type of sensitiv-
ity study. The results obtained from the quasi-
analytical method are almost identical to those
obtained by the finite difference approach. Fur-
thermore, the study indicates that (a) obtaining
the quasianalytical sensitivity derivatives using an
iterative conjugate gradient method is more ef-
ficient than computing the derivatives by the fi-
nite difference method, especially as the number
of design variables increases, and (b) the quasi-
analytical method shows promise with regard to
analysis-sensitivity methodologies applied to large
aerodynamic systems.
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ABSTRACT

The quasianalytical approach is applied to the three-dimensional full potential equation
to compute wing aerodynamic sensitivity coeflicients in the transonic regime. Symbolic ma-
nipulation is used to reduce the effort associated with obtaining the sensitivity equations,
and the large sensitivity system is solved using ”state of the art” routines. The quasian-
alytical approach is believed to be reasonably accurate and computationally efficient for
three-dimensional problems.

INTRODUCTION

To design transonic vehicles using codes which utilize optimization techniques requires
aerodynamic sensitivity coefficients, which are defined as the derivatives of the aerodynamic
functions with respect to the design variables. In most cases, the main contributor to the
optimization effort is the calculation of these derivatives; and, thus, it is desirable to have
numetical methods which easily, efficiently, and accurately determine these coefficients for
large complex problems. The primary purpose of the present study is to investigate the
application of the quasianalytical method [1,2] to three-dimensional transonic flows using as
the fundamental flow solver the three-dimensional transonic full potential fully conservative

code, ZEBRA [3).

PROBLEM STATEMENT

Application of the quasianalytical method to the full potential equation yields the sen-

sitivity equation
IR« i ink \ _ [ 9Rijk (1)
3XD | dxXD

a¢ii,)j,kk




where XD is the vector of design variables and the residual expression, R, of the full
potential equation in the computational plane, X,Y, Z, in terms of backward differences is

- pU 14 - pW ’
Rijx= 5x(p7)i+1/2,,',k + 8y (p—J—):',,'H/z,k + 52(81—);',,',”1/2 2)

Here, the retarded density 5 and the contravariant velocity components U, YV, and W, are
lengthy functions of the reduced potential function, 4. The boundary conditions for Eq.(2)
are the surface condition, W = U2% + V2, the Kutta condition along the wing semispan,
[ =A¢, zrg<z<oo,and the far?{)éld condition. Additional conditions are the downstream
boundary potential ¢, =0 and the wing symmetry condition, V =0.

The discretized form of Eq.(2) contains lengthy expressions, and mathematical symbolic
manipulation [4-6] was used to determine the functional dependencies of the residual, the
analytical forms of the derivatives, and to generate the corresponding computer code. The
basic approach used to differentiate the residual expression was to treat the main expression
in terms of smaller subexpressions, each of which was examined in terms of its constituents.
This process was extended until simple functional forms for the derivatives were obtained.
This subdivision and chain rule differentiation by symbolic manipulation efficiently generated
source code for the jacobian and vectors in Eq.(1). The resultant large sparse system,
typically 17500 « 17500, of algebraic equations is then efficiently solved for z3% using either
the iterative conjugate gradient method or the generalized minimum residual algorithm [7-
8]. From these, the pressure and lift coefficient sensitivities to the design variables can be
computed. Notice that the effort associated with this approach is essentially independent of
the number of design variables considered on the right-hand-side of Eq.(1).

EXAMPLE AND DISCUSSION

Consider the ONERA M6 wing planform with NACA 1406 airfoil sections at a super-
critical condition of M., = 0.84 and « = 3deg, which has subcritical lower surface flow and

exhibits an upper surface shock wave located at 70 % chord at the root to 10 % chord at-=

the tip that increases in strength from the root to a point near the wing tip. Basic design
variables for the current problem include freestream design variables, Mach number Mo, and
angle of attack a; cross-section design variables of maximum thickness, T', maximum camber,
¢, and location of maximum camber, L; variables that define wing twist, T1,72,T3, and T4;
and planform tip coordinates, XLE:,, XTEup, and Yu,. Knowing the sensitivities to these
basic design parameters permits subsequent evaluation of the derivatives with respect to
the nonbasic variables taper ratio, aspect ratio, wing area, and sweepback angles. Thus, the
present method determines sensitivity coefficients for twelve design variables and five derived
design variables.

As part of the solution 8¢/8X D values are obtained for every grid point in the flowfield.
Also, the method automatically computes 8C,/8XD at twenty-five chordwise locations at
cach of the twenty semi-span stations on the wing as well as 4C;/dXD at each of the span
stations. Typical results for the example case are shown in Fig.1 for a midspan station. As
expected, the sensitivity derivative profiles for the lower surface are typical of subcritical
flow [2]; and the upper surface results exhibit large variations in the vicinity of the shock
wave. The latter reflect the influence on the acrodynamic coefficients of the sensitivity of
the upper surface shock wave location to the various design parameters. Currently, efforts
are in progress to validate the present method by comparison with the finite difference
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approach, which calculates sensitivities by perturbing a design variable from its previous
value, obtaining a new solution, using the differences between the new and old solutions
to obtain the sensitivity coefficients. While this direct technique is computer intensive and
inefficient, it should serve as a check on the present method.

Based upon the present results, it is concluded that the quasianalytical method is a
viable and efficient concept for the determination of three-dimensional transonic aerodynamic
sensitivity coefficients. In addition, use of symbolic manipulation to evaluate the elements
of the sensitivity equation is believed to be an efficient approach to the development of
such methods. Finally, further studies are needed to determine the accuracy and range of
applicability of the quasianalytical approach.
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Aerodynamic Sensitivity Coefficients Using
The 3-D Full Potential Equation
Hesham M. El-banna™ and Leland A. Carlson™"
Texas A&M University, College Station, Texas 77843

Abstract
The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing
aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used and is crucial in
reducing the effort associated with obtaining sensitivit); equations, and the large sensitivity system is solved using
sparse solver routines such as the iterative conjugate gradient method. The results obtained are almost identical to
those obtained by the finite difference approach and indicate that obtaining the sensitivity derivatives using the quasi-
analytlcal approach is more efﬁcnem than computmg the denvatlves by the ﬁmte dlfference method, especially as

the number of design vanables increases. Itis concluded that the quasi- analytlcal method is an efﬁcnent and accurate

approach for obtaining transonic acrodynamic sensitivity coefficients in three dimensions.

Nomenclature

C Maximum camber in fraction of chord

CG Conjugate gradient

Ci Section lift coefficient

CL Wing lift coefficient

Cp Pressure coefficient

c(y) Chord function

FD Finite difference

GMRES Generalized minimum residual

L Chordwise location of maximum camber in fraction of chord
M Local Mach number M

M, Cutoff Mach number 0.94 < M, < 1.0

M, Freestream Mach number

P Freestream pressure, nondimensionalized by {2v/(y + 1)]P,
QA Quasi-analytical

Based on ATAA Paper 92-2670
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To design transonic vehicles using optimization techniques requires acrodynamic sensitivity coefficients,
which are defined as the derivatives of the acrodynamic functions with respect to the design variables. In most cases,
the main contributor to the optimization effort is the calculation of these derivatives; and, thus, it is desirable to have

numerical methods which easily, efficiently, and accurately determine these coefficients for large complex problems.
[-8
t

At presen

first approach, the sensitivities are calculated by perturbing a design variable from its previous value, a new
complete solution is obtained, and the differences between the new and the old solutions are used to obtain the

sensitivity derivatives. This brute force direct technique is computer intensive for complex governing equations that

-

Freestream velocity, nondimensionalized by V
Maximum thickness in fraction of chord
Twist angles at 0, 20, 60, and 100% semispan
Contravariant velocity components

Critical speed

Physical grid system

Computational coordinates

Leading edge function

x-Coordinate of leading edge of wing tip
x-Coordinate of trailing edge of wing tip
y-Coordinate of wing tip

Vector of design variables

Density, nondimensionalized p,,

Freestream density, nondimensionalized by p,,
Stagnation density
Retarded density

First order backward difference operator

Switching function
Angle of attack

Ratio of specific heats

_ Reduced poteatial function

Full potential function
Circulation

Introduction

» there are two primary approaches for calculating transonic aecodynamic sensitivity derivatives. In the

2

N



include a large number of design variables. In the second approach, termed the quasi-analytical method, the
sensitivities are obtained by solving a large sparse system of algebraic sensitivity equations. While the matrix

elements in these algebraic sensitivity equations are obtained analytically, they -are obtained by analytically

differentiating the discretized or numerical forms of the equations governing the flowfield. Further, the aerodynamic -

and sensitivity solutions are obtained numerically. Thus, the method is termed 2 quasi-analytical rather than a
numerical or analytical method. It should be noted that the differentiations to obtain the coefficients for the
algebraic sensitivity equations, while being straightforward in principle, are usually lengthy and tedious. However,
once obtained, the sensitivity equations can be very efficient and accurate for computing large numbers of sensitivity
coefficients.

In the first phase of this research?, the quasi-analytical approach was developed and applied to’ two-

dimensional airfoils. Based upon these proof-of-concept investigations, it was concluded that the quasi-analytical

method was a feasible approach for accurately obtaining transonic aerodynamic sensitivity derivatives in two
dimensions and was often more accurate and efficient than the finite difference method as the number of design
variables was increased. Further, the algebraic forms of the matrix elements in the two-dimensional sensitivity
equations were deterrmned by hand, which xnvolved extensive effort associated with dlfferentlatmg the discretized
residual with respect to the various design vanables and the dependent unknowns. Today, such operations could be
carried out using symbolic mampulatlon programs , such as MACSYMA!%!! but present symbolic manipulators
are incapable of automatically performing all the necessary simplification, combinations, and cancellations of terms
associated with algorithmic simplification of expressions. Consequently the user must be familiar with the commands
available for the organization of expressions and conduct various trials and expédmepts to identify a symbolic
procedure which is efficient. As a result of these two-dimensional studies, it was decided to continue the research.
Consequently, the primary objectives of the present effort have been to apply the quasi-analytical method to three-
dimensional transonic flow, investigate the use of symbolic manipulation progmhisjiz'l3 for obtaining the matrix
elements of the sensitivity equations, and to determine the efficiency and accuracy of the quasi-analytical approach
for determining transonic aerodynamic sensitivities.

For this extended effort, it was decided to use for the flow solver a modified version of the three-
dimensional direct-inverse analysis-design transonic full potential fully conservative code, ZEBRAII'*17. The full

potential equation was selected because it can be solved rapidly and is robust and accurate for engineering

purposes! 7. Further, it can be formulated using a stretched Cartesian grid system that can be rapidly generated and

which has simple metrics. Also, such a grid perrmts the variation of several design parameters without changing
the physical or computational grids. For the present work, the analysis portions of ZEBRAII have been rearranged
and unneeded portions deleted. In addition, the capability of calculating the sensitivity derivatives via the finite

difference approach has been added.
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Problem Statement

Application of the quasi-analytical method to the full potential equation yields the sensitivity equation

dR, (ad)ﬁ.ﬁ‘u] B _(aRiJ’,k] | (1)
axp | \axp

ig.k
9

where the residual expression in the computational plane in terms of backward differences is
R, :67[32] . ;;y(p_V] . g*z(ﬂ’] @
J iv 124k J iJ.+ 12,k J if k12

The retarded density coefficients in Eq. (2) are

Pitrga =~ Vi Piamik 3)
" Viapx Pi-1nk

—_— 1 — — —

Pijerpe™ z(l;iqn..i,k Ptk Y Picipgat Pi-m,,'q.k) (4)

J— 1 — — i

Pijkrin™ z(;mn.j,k Pkt YRkt P.‘-xfz,j,ul) ®)
where

1 1
p =[1 R (L R N W<I>Z)]Y" (0)
y+1

and

v = miu{l,mzx(l - —}{‘- ,0]] (N
M2



In Eq. (7), the Mach number is obtained from

L (i]— =(, L1-l Mz):: , @®)

T
and thus

M*=—(p'" " -1) M

where p is nondimensionalized by p,. From Eqs. (7) and (9),

0, 7 M<l1

= ~-DM_[2 10
el G-bmp (10)
p'T-1

The contravariant velocities are
U=(X+XH® +X @, (11)
V=X, +®, (12)
w-a, (13)
and the full potential is split into perturbation and freestream components as
=, + Xq_Cos(a) + Zq_Sin(c) (14)

Note that the angle of attack enters the formulation thru the above equation and that the physical gnd system (x,y,z,)

is transformed into the wing aligned computational grid (X,Y,Z) by

X(x,y) = %;ﬂ)_ (15)
YO) =y (16)
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The boundary conditions are the surface boundary condition,

w-u9 . .p% (18)
axX ay
the Kutta condition along the wing semispan,
F=A¢’ er<xgoo (19)

and the farfield boundary condition. Additional conditions include updating the potential on the downstream
boundary (¢_ =0) and implementing the wing symmetry condition by setting V = 0.
Once the unknown sensitivities 3¢/3X D are obtained, the sensitivities of the pressure coefficient, Cp, with

respect to the design variables can be computed. From the pressure coefficient expression

Cp=—3= (20)
Pq.l2

substitution for the pressure using the isentropic relations yields,

cp= U tDIY vy @1)
Pq.

where p is given by Eq. (6) and where the freestream values q_, p_, and P in Eqgs. (20) and (21} are

- y+1 "
q. —‘———l (22)

y-1+2/M?

_ G -1)
p-=[1 -l—qu] * (23)
y+1
R (24)
2y

Design Varnables

Design variables can be arbitrarily classified according to whether or not they are coupled. Uncoupled

design variable are termed basic variables and are the independent variables that influence the solution of a problem.



Coupled design variables are defined here to be nonbasic and are obtained from the basic design variables usually
using simple algebraic expressions. For example, in the current problem, wing planform sweepback angles are
defined as nonbasic design variables since lhey are obtainable from the basic Vadableg, 1.e. the coordinates of the
comer poiats of the wing. Other examples of nonbasic design variables are the wing area, aspect ratio, and taper
ratio.

The basic design variables for the current problem include freestream varables, aicfoil cross-section
variables, and planform parameters. The freestream design variables include the freestream Mach number, M __,
and the angle of attack, a. The Mach number enters the formulations thru Eq. (22) while the angle of attack shows
up in Eq. (14). The airfoil section design variables include maximum thickness, maximum camber, location of
maximum camber, and four angles that define at each spanwise station the amount of geometric twist. These
variables enter the problem via the wing surface boundary condition, Eq. (18). The basic planform design variables
define the geometry of the wing planform and are comprised of the coordinates of the wing comer points, which
enter the formulation via Eq. (15). Evaluation of the sensitivities with respect to these basic planform vaciables
allows the determination of the derivatives with respect to the nonbasic variables. Thus, for the current three-

dimensional problem, the vector of design variables consists of twelve basic variables and is given by,
XD =[M_«,T.C,LT,, T, T, T, XL, XT;, Y] (25)

These variables are used in obtaining the right hand side vectors in Eq. (1).

Note that the design variables listed in Eq. (25) form a complete set of the basic design variables
influencing the aerodynamic solution for the wing planform and wing sections considered in the present
investigation. If the wing planform were more complicated, having for example a leading edge break, then the
coordinates of that break point would have to be included in the vector of design variables. For more complex
configurations or for problems involving coupling such as aeroelastic phenomena, the design variable set would be
found by examining the solution model(s) and determining which flowfield and geometric parameters appear and

consequently affect the aerodynamic solution.

Symbolic and Numerical Treatment

The basic approach used to symbolically differentiate the residual expression was to treat the main
expression in terms of smaller subexpressions, each of which was examined in terms of its constituents. This process
was extended until the final subexpressions included the apbropriate derivative argﬁment, the reduced potential or
the design variables, in a simple functional form. The best method to obtain these subexpressions was to consider
the governing equation and the involved intermediate expressions in the original form given in Eqs. (2)-(14). This
splitting or nesting of expressions with various intermediate dependencies declared in advance allowed each

subexpression to be handled efficiently by the symbolic manipulator, in this case MACSYMA. This usage of the
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chain rule of differentiation together with the ability of the symbolic manipulator to keep track of various equations
resulted in an efficient scheme of analytical differentiation. It is noted that an earlier attempt to obtain the derivatives
from a residual expressed as an explicit function of reduced potential thru appropn'até substitutions, Eq. (14) into
(11), (12) and (13) up to Eq. (2), proved to be a poor strategy since the rapid increase in expression size eventually
caused the manipulator program to encounter limitationson memory and manipulative ability. The experience gained
from this attempt, however, tumed out to be useful in identifying the capabilities and limitations of various symbolic
commands and assisted in the development of further symbolic aspects associated with the project.

During this study, various symbolic manipulator codes were developed to assist in the application of the
quasi-analytical method. The first code, found all residual reduced potential dependencies. This code was needed
prior to carrying out the analytical differentiation of the residual, Eq.(2),'with respect to the reduced potential
function. Notice that the latter function shows up in Eq. (14), where the details of the dependence of the residual
expression on this function are not obvious, since intermediate expressions Eqs.(3) to (13) are involved. As
mentioned earlier, handling each intermediate subexpression separately simplifies the operations involved. The result
of this code was a file which included various intermediate dependencies obtained in the form of lists. The second
code used these lists to perform the symbolic differentiation process to obtain the Jacobian and right hand side
vectors for Eq. (1), and the result of this lengthy code was a large 15000 line FORTRAN segment that included
three subroutines. This segment is the heart of the quasi-analytical method and is linked into the quasi-analytical
sensitivity driver. The third symbolic code geherated FORTRAN source cdd'e for the derivatives of the pressure
coefficient, Eqgs. (21) to (25), with respect to the vector of design variables and used the reduced potential seﬁsitivity
derivatives as input arrays. This segment of FORTRAN source code was then also linked with the segment obtained
from the second symbolic code. Finally, the fourth symbolic code was created dun’ng debugging operations to test
the evaluation of various residual terms and was very helpful in revealing logic and procedure errors. Finally, it
is important to emphasize that each of the above symbolic codes is executed only once followed by a transfer of
the resulting source segments to the quasi-analytical sensitivity driver. Details and sample MACSYMA codes for
these processes are given in Ref. 4.

Direct solvers that were previously used iu the two-dimensional problem” failed on the three-dimensional
problem due to limitations on memory; while the iterative routines developed earlier worked properly but were very
slow. However, library solvers!® based on the iterative conjugate gradient method and the generalized minimum
residual approach have been used with success and have proven to be extremely efficient wifh respect to memory
and execution speed. For these solvers, the exact amount of storage needed depends on the sparsity and band width
of the Jacobian matrix which in turn depends on the size of the three-dimensional grid. The present grid of 45 x
30 x 16 yields a large, sparse, banded, and unsymmetric Jacobian matrix of (43 X 29 X 14) X (43 X 29 X 14) or
about 17500 x 17500 that is less than one percent dense. An incomplete LU factorization is applied only once to

this large matrix, and the sensitivity equations are solved using the iterative CG or GMRES methods!819,20



Following the factorization of the Jacobian matrix, back substitution using the kaown right hand side vectors
generates the unknown sensitivity derivatives with a trivial computational cost. This approach exploits the efficiency
of the QA method as the number of design variables is increased.

Program Structure

The analysis-sensitivity program consists of the modified flowfield analysis program, ZEBRA, the finite
difference sensitivitly driver, and the quasi-analytical sensitivity dniver. Execution of the main code starts with an
analysis run followed by sensitivity derivative calculations carried out either using the FD method or the QA
approach. The FD portion of code uses lwo consecutive ZEBRA runs to calculate a vector of sensitivity derivatives.
This brute force technique, while straight-forward, has the disadvantage of being expensive to implement and
exhibits problems when single precision variables are used. The QA dnver consists of two main parts. The first part
assembles the Jacobian matﬁxrrzrind the right-hand—sidt; vectors thru callsvt:) the iarge code segment genefated via
symbolic manipulation. This section of subroutines, as explained earlier, contains source code for the elements of
the Jacobian matrix and right-hand-side vectors. Following the numerical assembly step, the second part of the
sensitivity driver solves the sensitivity equations using one of -the available linear sparse sol\..rers and yields the

unknown sensitivity vectors at each point in the flowfield. Finally, the resulting sensitivity derivatives, d$/dXD,

are processed to obtain the pressure coefficient sensitivity derivatives Cp[dXD, at twenty-five chordwise locations

at each of the twenty wing semispan stations.

Test Cases’
7 For the present study, most of the test cases utilized the four comered ONERA M6 wing planform 15-17
witﬁ a ;/ariety of airfoil sectlonsmcludmg NACA 1406, 1706, ?.206, an&2706 airfoils. This planform has an aspect
ratio of 3.8 and a taper ratio of 0.56, with leading and trailing edge sweeps of thirty and 15.76 degrees respectively.
Freestream céndilions included subcritical cases at Mach 0.8 and an angle of attack of one degree, several
supercritical transonic cases, and some supersonic cases up to Mach 1.2. Due to space limitations, .most of the
results of this paper will be for the ONERA M6 planform with NACA 1406 airfoil sections at freestream conditions
of Mach 0.84 and three degrees angle of attack. This case is challenging since it has a subcritical lower surface flow
and exhibits an upper surface shock wave located at 70% chord at the root that shifts to 10% chord at the tip and
which increases in strength from the root to a point near the wing tip. Thus, the results for this case should be
sufficient to demonstrate the capabilities of the present analysis-sensitivity method at transonic conditions. Complete
detailed results for all the cases are presented in Refs. 4 and 21.
In the above cases, a coarse-medium grid sequencing was used in the flowfield computations to enhance
convergence. For the finite difference method of computing the sensitivities, each design variable was individually

perturbed a small amount, typically 1 x 106, and a new flowfield solution obtained. In all cases, double precision

arithmetic was utilized and the residual reduced eight orders of magnitude. In addition, the finite difference

sensitivity results were computed by restarting each of the perturbch design states from the coarse grid then
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proceeding to the medium grid. Different strategies for grid sequencing, such as starting on the medium grid with
a previously obtained converged soulution, are all valid options to speed up the finite difference approach; but these
were not investigated in this study. In the quasi-analytical method, the sensitivity equation, Eq. (1), was solved with

twelve right hand sides representing the vector of design variables, Eq. (25), using one of the sparse solvers. In all
cases, d/dXD values were obtained for every gridpoint in the flowfield. Also, the method automatically computed
upper and lower surface 8Cp/dXD values at twenty-five chordwise locations at each of the twenty semispan stations

on the wing planform as well as the OC1[OXD values at each of the span stations and the overall wingdCL/3IXD

results.

Results and Discussion
For the subcritical test cases, the resulfs obtained by the qu:isi—analytical method were found to be in
excellent agreement \-Nith results obtained from the finite difference method. In addition, the results followed the
trend of the two-dimensional study.? ] )
Representative results for the chordwise variation of the pressure coefficient and its sensitivity derivatives
for a supercritical case (M, = 0.84, @ = 3°) are shown on Fig. 1 for 56.4 percent semispan. Displayed in the

corner in each case are the integrated coefficients, section lift coefficient for the pressure distribution and JdCloxXD,

for the rest. In subcritical flow, the sensitivities with respect to the Mach number and the thickness would be small
and similar for the upper and lower surfaces while those for angle of attack, camber, and camber location would
have larger upper and lower surface values of opposite sign. As expected the sensitivity derivative profiles on Fig.
1 for the lower surface are typical of subcritical flow?. However, the upper surface results exhibit large variations
in the vicinity of the shock wave that reflect the influence on the pressure of the sensitivity of the upper surface
shock wave location to various design parameters. As can be seen by noting the differences in vertical scale, the
pressures and lift coefficient at this mid semispan location are most sensitive to camber and least sensitive to camber
location. Finally, the agreement between the finite-difference and quasi-analytical predictions is excellent, indicating
that accurate three-dimensional transonic results can be obtained using the quasi-analytical approach.

Some results for the spanwise variation of the section lift sensitivity derivatives are shown on Fig. 2, where

the numbers in the lower left comer in this case are the total wing lift coefficient sensitivities, 0CL[3XD;. Note that

the sensitivity of section lift to freestream Mach number and angle of attack is relatively constant over most of the
semispan, but that the lift sensitivity to wing twist at twenty (T2) and sixty (T3) percent semi-span is concentrated
in the region near the twist location. While not shown, lift sensitivities to twist at the root and the wing tip are only
one-third to one-fourth of those at midspan. In general, primarily due to wing sweep and finite span, all the section
sensitivity values are smaller in magnitude than corresponding values for the two-dimensional problem?. Finally the
agrecment between the finite difference and quasi-analytical section sensitivities is excellent.

Figure 3 shows representative section and wing lift sensitivity derivative results for some of the nonbasic

10



design variables. While the total wing lift sensitivities can often be obtained by other means, the present method
also yields spanwise and chordwise information. Note that while the lifts are relatively insensitive to the semispan,
the outboard lift and total lift exhibit a strong dependence on area, aspect ratio, ar.'Ad taper ratio, and that the
agreement between the quasi-analytical method and the finite difference approach is reasonable. While not shown,
the corresponding derivatives with respect to the leading and trailing edge sweep angles were very small. 4 2!
While both the finite difference and quasi-analytical methods yield similar resulits, the present results
indicate that for twelve desi gn variables the quast-analytical method is about 2.4 times computationally more efficient

than the brute force finite difference approach. However, it is recognized that the costs associated with the finite

difference method probably could be reduced by executing the perturbed runs directly on the medium gnd starting

with the design point solution obtained from the coarse gnd. Likewise, the quasi-analytical method could be
improved by utilizing various options associated with the sparse system equation solvers; and both methods are
probably affected by grid size. Therefore, the stated relative efficiency should only be viewed as an estimate when
comparing the two methods. 7

One application of sensiti\;{i;tdeﬁvativeé is solution predicti(;x;,wajnd- ‘Fig‘ 4 compares two pressure
coefficient distributions at the 56 percent semispan location predicted using a first order Taylor series expansion

about the original calculation point ‘with the actual variation. The predicted Cp’s were calculated using

CPprediceed = CPoriginat + (BCPIOXD) AXD, (26)

where the Cp[OXD,; values were obtained from the quasi-analytical method at Mach 0.84 and « = 3 degrees.

For the two results presented, the wing thickness was increased 8.3 percent to 0.065 chord and the wmg np leading
edge ordinate was moved aft 0.1 chord respechvely Since the ongmal lift coefficient at this stanon as shown on
Figure 1(a), was 0.383, both changes resulted in a slight increase in lift coefficient and aft movement of the
shockwave at this station. However, the detailed results 421 show that the movement of the wmg tlp ordinate caused
a lift coefficient decrease in the inboard sections of the wing. As can be seen on the ﬁgure the agreement between
the quasi-analytically predicted and actual pressure distributions is very good, which indicates that the sensitivity
derivatives calculated using the quasi-analr);tical method can be used for predictions. Similar results were obtained
for the other design variables.*

Since sensitivity derivatives describe the response of the overall solution to changes in design variables,
they can be computed over a range of flight conditions to determine the degree and nature of the influence of each
design variable on the solution. At transonic conditions, the Mach number strongly influences a wing flowfield; and,
thus, sensitivity derivatives were computed for the ONERA M6 planform with NACA 1406 cross sections at an
angle of attack of three degrees for Mach numbers ranging from 0.8 to 1.2. For simplicity, only the derivatives of

the total wing lift coefficients with respect to each of the twelve basic design variables were considered. Figure S

Il

I

ol WE we s



[
i

Ll
i

l oo
Vs

C

shows results for three of these design variables, freestream Mach number, maximum camber location, and wing
tip trailing edge ordinate. For all the design variables the largest variation of each derivative occurs in the transonic
regime below Mach one. In this range as Mach number increases, the upper surface shock wave is rapidly moving

towards the trailing edge with the inboard portions reaching the trailing edge. first. Thus, as shown bydCL/aM_ -

there initially is an increase in wing lift coefficient. However, by Mach 0.92, the inboard portion of the shock wave
1s at or near the trailing edge, and the effects of lower surface pressure changes due to freestream Mach number

increase cannot be compensated by aft shock wave movement, thus resulting in a less rapid (smaller derivative value

of oCLJaM ) rise in lift. By Mach 0.96 the entire upper surface shock wave is essentially at the trailing edge and

the lift decreases, as indicated by the negative value of 3CL/IM_. As can be seen on the figure, the effects of this

shock wave movement are captured by the variations in the sensitivity derivatives. Also, notice on Fig. 5 for
supersonic freestream Mach numbers that the sensitivities are considerably lower. Additional results*2! show that
the derivatives of the total lift coefficient exhibit their largest change with respect to M., T, C, a, XLy, XTy¢
followed by 'fz, T3, L, Y1, Ty, and Ty, indicating that a hierarchy of dominance exists among the design variables
for the current wing configuration. Finally, again ther,é is good agreement between the results obtained by the quasi-

analytical method and the finite difference approach.

Conclusion

Based upon the above results, it is concluded that the quasi-analytical method is a feasible and efficient
approach for accurately obtaining transonic aerodynamic sensitivity coefficients in three dimensions. In addition,
use of the symbolic manipulation packages to carry out the symbolic evaluation of the elements of the sensitivity
equations is crucial in this type of sensitivity study. The results obtained from the quasi-analytical method are almost
identical to those obtained by the finite difference approach. Furthermore, the study indicates that:

(1) obtaining the sensitivity derivatives using the quasi-analytical approach and an iterative conjugate

gradient method appears to be more efficient than computing the derivatives by the finite difference

method, especially when the number of design variables is large, and

(2) the quasi-analytical method shows promise with regard to analysis-sensitivity methodologies applied

to large acrodynamic systems.
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NOMENCLATURE £
c Chord length -
C Maximum camber -
C, Section lift coefficient i
C. Wing lift coefficient ]
G, Pressure coefficient —
E Young's modulus of elasticity (non-dimensionalized by 107 Psi) ;
f g h Grid stretching factors
ILE, ITE Leading and trailing edge index in the x direction .
LC Location of maximum camber -
M, Freestream Mach number -
R Residual of the aerodynamic equation ]
Tep Twist angle at the tip ]
TH Maximum thickness
tw Twist angle at a given section _
t Thickness of the plate(non-dimensionalized by the chord) -
T Residual of the structural equation
TU Residual for the U equation
Uoo Freestream velocity(also Ujpf) -
u v, w Perturbation velocity Cartesian components
XD “Vector of design variables =
X,Y,Z Cartesian coordinates directions
=
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Subscripts
e 0]

A

b

1),k
ii,jj,kk

Angle of attack

Structural deflections non-dimensionalized by the chord
Small perturbation velocity potential function

Ratio of specific heats

Circulation at a given station along the wing

Poisson's ratio
Freestream density

Free stream condition

Obtained from aerodynamic variables alone
Body

Gnid point

Counters for the residual dependencies
Counters for the selected deflections and loads for the coupling
Leading edge

Lower side of the wing

Pressure

At the root

Obtained from the structural variables alone
Trailing edge

At the wing tip

Upper side of the wing

INTRODUCTION

In the transonic regime, due to the non-linearity of the governing flow
equations, the determination of optimum aerodynamic loads is one of the main

difficulties facing the aircraft designer.

Since most present day commercial aircraft

operate transonically, computational methods which use optimization techniques are
being developed to improve current designs. However, in order for these advanced
computational codes to become more useful as design tools, it is necessary to develop
methods for the computation of the sensitivity of the different parameters, such as
aerodynamic forces or structural deflections, to the different design variables. With a
sensitivity derivative being defined as a system response of interest with respect to a
given independent design variable, it is desirable that such sensitivity coefficients be
easily obtained.

In the past, sensitivity methodology has been used in structural design! and

optimization programs? and in some aerodynamic studies.3-8

However,

the

predominant contributor to cost and computational time in the optimization procedure
has always been the calculation of sensitivity derivatives. Hence, efficient numerical



methods for computing such derivatives are needed for the integration of advanced
computational codes into systematic design methodology, where the computational
cost of a single flow analysis can be extremely high, particularly in three dimensions.

Consequently, the primary objective of this research is to investigate the

concept that it is possible to use similar, perhaps identical, incremental iterative,
solution approaches to efficiently couple for three dimensional transonic flow an
acrodynamic solution for the pressure distribution with a structural solution for the
corresponding deflections and to simultaneously use the same solution algorithms and
the quasi-analytical method to obtain the aerodynamic as well as the structural
discipline sensitivity derivatives for the fully coupled system with the input coefficients
necessary to determine system sensitivities. Since the entire method is complex and
requires an efficient flowfield as well as structural solver and since the present study is
essentially proof-of-concept, it was decided for the present work to base the
aerodynamics on the transonic small perturbation potential equation and the structural
solver on the small deflection plate equation. Because of their simplicity, these
equations are practical tools for the present proof-of-concept study where rapid
solutions are essential. Previous experience with this approach has indicated that it is
robust and reasonably accurate for engineering purposes. Finally, in order for an
optimization process to be accurate, it must take into account the system sensitivity
derivatives in which the effects of each discipline on the other is considered. Thus, the
solver also computes the coupling derivatives relevant to the calculation of the system
sensitivity derivatives.

Currently, one conceptually simple method for computing sensitivity derivatives
is the method of "brute force" finite differencing. Here, a design variable is perturbed
from its previous value, a new complete solution is obtained, and the differences
between the new and old solutions are used to obtain the sensitivity coefficients. This
direct technique has the disadvantage of being very computer intensive, especially if the
governing equations are expensive to solve and the number of design variables is large,
and the resultant values are often very sensitive to the magnitude of the design variable
perturbation. As a less costly alternative, sensitivity derivatives can, in principle, be
computed by direct differentiation of the governing equatlons In the case where the
continuous governing equations are differentiated prior to their numerical
discretization, the method is known as the "continuum" or the analytical approach®. On

~ the other hand, if the governing equations are differentiated after their discretization,
the method is known as the "discrete" or the "quasi- analytlcal“ approach.

Investigations concerning the feasibility of the quasi-analytical approach for the
computation of the aerodynamic sensitivity derivatives have been undertaken by many
researchers%56 and several methods have proven to be very successful. However, the
differentiation of the goveming discretized equations results in very large systems of

interest. The a appllcatlon of a direct solver method to such a system requires extensive
computer storage which for practical three dimensional problems is beyond the capacity
of modern supercomputers. Moreover, the sensitivity matrix, sparse in nature, is
generally very ill conditioned (or not diagonally dominant) and the convergence by the
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use of standard iterative techniques is very slow. To avoid these problems, it is
necessary to develop other iterative solution algorithms of the sensitivity equations.
One possibility is the incremental iterative technique*? which allows the iterative
calculation of the sensitivity derivatives using algorithms similar to those applied to the
flowfield..

The incremental iterative technique can be applied through a point semi-implicit
algorithm to solve for the flowfield, structural deflections, and their respective
sensitivities with respect to the different design variables simultaneously. However,
these results are only discipline specific. To obtain a trully optimized solution the effect
of one discipline on the other® needs to be considered. In other words, system as well
as discipline derivatives need to be determined. Consequently, a second objective of
the current work 1s to not only compute the coefficients needed for the system
sensitivity equations but to also investigate the number of system sensitivities needed
and methods for computing them.

THEORY

Flowfield Model

The equations governing transonic flow are highly nonlinear and range from the
Navier-Stokes equations to the small perturbation potential equation. Since this
research is a proof-of-concept investigation, the flow modeling is the simplest possible,
e.g. the non-conservative transonic small perturbation equation:

(I-ML-(r+DM )b, +d, +d,=0 (1.2)
where

dx=u (1.b)

¢y=V (1.0

b=w . (1.d)

As shown in Fig. 1, the selected geometry is a rectangular- wing with the z axis in the
spanwise direction.

Fig. 1 Geometry Setup

At the wing, the boundary conditions are the inviscid surface boundary
conditions for tangent flow:



2 2
Ve (U, +u) 2l gy 2 @)
Ox

oz
where y,, is a function of x and z and certain design variables, such as the angle of
attack. In the wake, the Kutta condition along the wing semispan yields:

['=Ad, xq<x <o (3)
while at the farfield, the boundary condition is:
$oo=0 (4)
At the downstream boundary, the Trefftz boundary condition can be approximated by:
At x=00: $y=0 (5)
Further, the wing symmetry condition is expressed by:
w(z=0)=0 ©6)

The finite differencing of Eq. (1), requires the use of a residual R written in

functional notation at the point i,j,k as: :
Rij5=R @i o XD) ™

Since the structural deflections are included as the boundary conditions, and are not
treated as dependent design variables in the above equation, Eq. (7) should be
considered a discipline equation.

After taking the total differential of Eq. (7) with respect to a design variable
XD, the sensitivity equation is obtained:

Roise | Russ || Hugu | JRunl g g
dXD % ;5u | XD oXD

In this equation lies the essence of the quasi-analytical formulation in which the
discretized governing equations are differentiated. Here, ‘bii,jj,kk is ¢(x(ii), y(jj), z(kk),
XD, 6); and the system matrix OR/O¢ is sparse, or non zero at certain points only
(mostly the ones neighboring i,j,k). In this equation, the vector of deflections {6}, even
though not explicitly shown, is considered to be a vector of independent variables.
Near the boundaries, Eq. (8) has been reformulated to include the flowfield boundary
conditions. The flowfield sensitivity derivatives 0¢/0XD that are obtained from solving
Eq. (8) above can be used to calculate pressure sensitivities 9C,/0XD which in turn can
be used to calculate the sensitivities of the section and wing lift to the design variables.

Structural Modeling
The structural problem is modeled by representing the wing by an equivalent
flat plate with dimensions almost coincident with those of the wing. The equation
describing the plate deflections is:°
DV45-Ap=0 )]
which assumes a thin plate and small deflections. Here, Ap 1s the loading due to the
difference in pressures between the upper and lower surface:
Ap=1p,ULAC, and AC =C,-C,, (10)
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and D, the flexural rigidity (or equivalent bending stiffness), is given by:

g 3
D-_ Bt - (i)
12(1-v")
This model, while simple, will yield both bending and twisting effects.
The boundary conditions!® for Eq. (9) involve both fixed and the free edges.

The root is the only fixed edge and there the boundary condition is:

At z=0 =0 (12.a)
as
= -0 12.b
> (12.b)
At the tip, the boundary conditions are written:
At z=1z '0”3—5+(2—v)53—5~0 (13.2)
oz’ dzIx’ '
A 8*é
+ =0 13.b
5z " ax® (13)

Eq. (13.a) combines the no twisting moment and no shearing force conditions at a free
edge while Eq. (13.b) states that the bending moment along the edge is zero. The other
two free edges are the leading and trailing edges, and the boundary conditions for those
are written: '

b7} Voal)

At X = xw,xm:rﬁ+(2— V) P =0 (14.2)
2R 88

=0 14.b

Ix’? Y 8z? (14.5)

Hence, thi$ system of equations establishes a well defined boundary value problem that
can be solved by finite differencing,.

The residual for Eq. (9) can be expressed as:

Ti=TisB5i a0 XD) (15)

Again, this equation is discipline specific since 8ii, kik=d(x(i), z(kk), d;;; x» XD); and
diina 15 the vector of potentials on the upper and lower side of the wing that are
related to the calculation of loads. This vector is considered to be composed of
independent variables. Unlike the flowfield case, which is three dimensional, the
deflection field is a two dimensional variable.

After taking the total derivative of Eq. (15) with respect to a design variable the
structural sensitivity equation is obtained:

dT ik — aTi_k 55 u L kk + a'ri,k — 0 (16)
dxXD B, 4 2XD XD




In this case, also, the system matrix is sparse. Like the flowfield case, Eq. (16) must
take into account the appropriate conditions at the boundaries.

Coupling -
As a result of aerodynamic loads, the equivalent plate representing the wing will
deflect: and such deflections will perturb through bending and twisting of the wing the
section angles of attack and camber line shapes. These deflections in turn will induce
" different load distributions, and the two processes must be interacted until a converged
solution is obtained. This interaction is the process of aerodynamic and structural
coupling.

The coupling between the structural and the flowfield solutions is achieved
through the wing boundary conditions and is included by simply adding the structural
deflections to the ordinates of the wing. Hence, after taking the derivatives with

respect to the x and z coordinates, the boundary conditions equations are modified by:

5)’ u,l - ay u,l + 35 (178)
ax dx A ax ’
Oy un _ (8Yun) , & (17.6)
fz Jz A dz ’

Note that this coupling is only carried out at the field variables level. In other words,
for a linear case (much below the critical Mach number), a case in which the sensitivity
matrix OR/3¢ would not be influenced by the values of ¢, this aeroelastic coupling
would only slightly affect the aerodynamic and the structural sensitivity derivatives.
Thus, the coupling is said to be achieved for the sensitivity derivatives at the zero order
only. -

System Sensitivity . :

As mentioned, for an optimization process to be accurate, it must take into
account the system sensitivity derivatives in which the coupling between the disciplines
is included. Thus, the calculation of interdisciplinary sensitivities such as the sensitivity
of the pressure distribution to the thickness of the plate or that of the tip deflections
with respect to the camber at the tip are needed. In general, the set of equations
governing the entire coupled system can be written as:?

A((XD, ), §)=0 — (18)

S((XD, ¢), 8)=0 (19)
where Eq. (18) represents the aerodynamics and Eq. (19) is for the structures. For the
system analysis ¢ can be replaced by AC, since it is the variable involved in the
aerodynamic coupling. The vectors grouped in the inner parentheses are the input,
while the vectors of unknowns (output) are listed last. The purpose of the analysis is to
find the total derivatives dY/dXD of the output vector with respect to the different
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design variables. According to the implicit functions theorem, the equations above can
be written as!o:
ACp= ACp (XD, d) (20)
&= 04(XD, ACy) 2n
After considering Y=({ACp}.{8}), taking its total derivatives with respect to XD, and
rearranging the terms, the following system equation is obtained:

1 -]
AS{dY }:{5Y} 22)
T I dXD OXD
where JAg is a Jacobian of the partial "coupling” sensitivity derivatives OACp/06 and
Jg A is the Jacobian of 85/0ACp for selected points on the wing. For example, the i-th
column of Jog comprises the partial derivatives with respect to the i-th displacement.
The partial derivatives in the coupling matrix as well as the right hand side are, by
definition, calculated using strictly discipline derivatives. Again, the quasi-analytical
approach is used. Equations (7) and (15) are rewritten as:

Rij,kERij,k(()(Dy 5),¢iidj,kk) (23)

le =T, k((XD ACP) 611 kk) (24)
where & is considered an mdependent variable for Eq. (23) and ACp is considered
independent for Eq. (24). This approach is valid since it is discipline specific.
Differentiating Eq. (23) with respect to a given deflection and Eq. (24) with respect to
a given ACp on the wing yields the system of linear coupling sensitivities equations:

dR |, _ IR ik B i o + IR Gk =0 (25)
dé B i 23 2

dT . oT. . aT.
iLk — ik a i kk + i.k = 0 (26)
dAC, 3 ;. |l GAC, A C

which when solved yields the coupling sensitivity derivatives, i.e. the elements of the
J .5 and Jg, matrices, necessary for the calculation of the system sensitivities via

Eq. (22).

DESIGN VARIABLES

Design variables are classified into two groups, the aerodyanmic variables
termed XDA and the structural vanables called XDS. One variable (My,) is common

to both vectors. A desngn variable is termed to be acrodynamic or structural dependmg
in which expression of the discipline residuals it appears. For example, the angle of
attack would be an aerodynamic variable while the plate thickness, which only appears
in the deflection equation would be a structural vanable. However, all the design



il W

variables used are basic variables in that they are uncoupled and independent. For the
current problem the vector of design variables consists of twelve variables and is given
by:
XD= (XD1,..., XD12) (27)

These design variables can be classified into three groups: ..
(a) Freestrcam design variables: These include the freestream Mach number and the
angle of attack. The Mach number enters the formulation through Eq. (1) while o
appears in the boundary conditions in Eq. (2).
(b) Cross section design variables: These include the variables that define the airfoil.
For the present study only NACA four-digit airfoils are considered. Thus the relevant
design variables are maximum_thickness, maximum camber, and location of the
maximum camber. at both the root and tip. Another variable defining each spanwise
section would be the geometric twist, usually defined in terms of the relative twist of
the wing tip to that of the root. The airfoil sections as well as the aerodynamic twist at
a given span station are obtained by linear lofting between the root and tip the values
for TH, C, and LC, each expressed as a fraction of the chord, i.e.:

TH = THroot+Z/Ztip (THyip- THroot) (30)
C = Croot*Z/ztip (Ciip~ Croot) €2)
LC = LCroot+Zzip (LCtip- LCroot) (32)

It should be noted that this formulation is not a point by point lofting in which the
vertical coordinate is interpolated linearly from root to tip. Nevertheless, this approach
was chosen to simplify the analytical derivations as well as the coding. The section
twist is also obtained by linear interpolation between the wing root and the wing tip:

tw= Z/Ztip Ttip (3 3)
When taking the derivative of y,, with respect to x, the following is obtained:

(ay“") S Y m g w (34)
A

ox ox  0x
T,
ay u,l — aYc + 5YTH _ l‘Px (35)
z ), oz oz Z
With this formulation, the vector of the aerodynamic design variables can be written:
XDA= (o, THroot, THiip, Croots Ctip> LCroot, LCtip, Ttip, M) (36)

(c) The structural variables: These include the parameters involved in the plate
deflection equation. The first, M, comes from the dynamic pressure term, second is

the thickness of the plate t, followed by Poisson's ratio v, and Young's modulus of
elasticity E. In the present study, the dynamic pressure is calculated using the sea level
conditions. Thus, the vector of structural design variables is:
XDS=(M_, t, v, E) 37
These two vectors are combined to form a single vector of design variables:
XD= (o, THroot, THtip, Croot Ctip» LCroot, LCiip Ttip, Moo, L, V, E) (3%
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DISCRETIZATION APPROACH AND NUMERICAL PROCEDURE

Aerodynamic Analysis

As previously stated, the aerodynamic analysis is based on the transonic small
perturbation potential formulation in Eq. (1), formulated using a Cartesian grid and a
finite computational domain. Hence, the transformation utilized maps the infinite
physical domain into a finite computational gnid.

In the present formulation, the infinite physical plane 1s transformed via tangent
functions into the finite computational space shown in Fig. 2. Thus, the i=1, 1=IM, j=1,
j=IM, and k=KM planes physically correspond to infinity and k=1 is the wing symetry
plane. Further, the wing is located between two grid lines, JB and JB-1.

C
N1
k=KM
g1 IL k=
= R P I I A_Enf_
& JB /+l /,‘/ —————— 7 J:—__—/-7‘I /-l
é—_. —{ - gl -l. .............
JB -1 i i
i ' .
=1 i -1 |: Ktip
i=IM i=1

£E=0.5 E=-05

Fig. 2 Computational and Physical Domains

Since there is a potential jump across the trailing edge cut, which extends to
downstream infinity, and since the jump depends upon the trailing edge potentials, the
sensitivity matrix, OR/0¢, while banded, contains elements far from the central band.
Consequently, the rapid and efficient solution of the sensitivity equation by direct
methods is difficult. However, the sensitivity equation can be solved by the same
iterative method as the flowfield, by the introduction of a new residual S;;,
corresponding to Eq. (8). ‘

For the sensitivity portion of this analysis, the residual expressions, R;;,, are
differentiated analytically with respect to the flowfield variable ¢. Similarly, the right
hand side of the sensitivity equations is determined by analytical differentiation of the

- residuals with respect to each design variable. Unfortunately, the size of the sensitivity
matrix is tremendous for fine grids and storing such a matrix is beyond the capability of
many computers. In the present study, the storage problem is solved by the use of a
more efficient solver, namely the incremental iterative technique. The additional
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available memory space allows the use of finer grids and the inclusion of other
disciplines as well.

Once the potentials are obtained, the Cp‘s arc obtained through the small
perturbation relation:

C, =-20, (62)

P
which requires the extrapolation (first order) of the ¢ values above and below the plane
of the wing. The section lift coefficient is then computed directly from the circulation
around every airfoil section:

C = 2T, = 2( ITE.BX d)l'[‘é,m-l,k) (63)

which gives faster and more accurate results than those obtained by integration of the
C.'s difference between the lower and upper surfaces. The wing hft coefficient C, is
calculated by integration over the span. The corresponding sensitivity derivatives are
then determined from:

[ac‘) _, 0T, (64)
oXD J, XD

and 8C,/0XD can be calculated by numerical integration of the above coefficient along
the span.

Structural Analysis
Since Eq. (9) is a fourth order partial differential equation, its solution can be
significantly simplified by splitting it into two equations to be solved simultaneously:!!

o ap
Vig-—==0 65
- (65)
Vs-u=0 (66)
In non-dimensional form, Eq. (65) is:
- Viu-kaC,=0 - (67
where A o | D
- M2
k:koE(l—vz)—t—;"— (68)
and
6Yp. -
k. = Ll 69
o= S5 (69)

After splitting the governing equations, the next step should be to split the eight
boundary conditions written in Eqs. (12)-(14) into four for the u's and four for the
deflections. However, this splitting must be carried out so that the solution scheme
does not become unstable. When applying the Laplacian operator to Eq. (12.b) one
obtains:

11
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For the frec edges, the situation is more complicated. The first step would be to take,
the partial derivative of u in the z direction. When combining the result of this
differentiation with Eq. (13.a) the appropriate boundary condition becomes:

du 0’8

At z=z, Py (v-1) FRPwE anH

When finite differenced, this formulation is accurate and has better stability
charactenstics than the formulation with the third order partial derivative with respect
to z. Similarly, at the leading and trailing edges of the plate the boundary condition for

u can be expressed:

Ju 3’5
At x= : —_—= -1) —— 72
X=X g XTE % (v )axazz (72)

Since the flowfield solver uses a finite differencing technique with a given grid
the same technique and the same grid are used to obtain the structural deflections,
which simplifies the aerodynamic structural coupling. Hence, both the flowfield and
structural solutions can be calculated within the same loops, which is computationally
efficient. Consequently, the structural part uses the same grid metrics. Further, the
field variable u is first obtained and then used as an input to solve for the deflection at
the same point, thus enhancing convergence and stability.

The boundary conditions stated in Egs. (12)-(14) should be applied at the exact
boundaries of the wing which do not coincide with an exact grid point in the
computational domain because the leading, trailing, and wing tip edges are located
between grid lines. Hence, a Taylor series development should be used at all the
boundaries except the root, where the boundary coincides with a gridline. This
development would involve higher order partial derivatives which when finite
differenced would yield extremely complicated expressions. To avoid that problem, the
size of the equivalent plate and the grid were chosen such that the free edge boundaries
of the equivalent plate are very close but not coincident to the wing leading, trailing,
and tip edges. The boundary conditions corresponding to Eq. (71) and (72) can cause
numerical divergence and a possible solution is to simplify them so that numerical
stability can be created. Fortunately, the variable u, physically corresponds to the
second derivative in one direction at a given edge. For example, at the wing tip, if it is
assumed that the loading along the wing is only a distributed loading without
concentrated loads or moments to cause discontinuities in the curvature of the plate,
the assumption that the second partial derivative with respect to z is constant is
acceptable. Similarly, at the tip, the "curvature in the x-direction" or the second partial
with respect to x will also be constant in the absence of concentrated loads and

moments. Hence, the approximation that u is constant along a free tip is reasonable.
In addition, this condition does not have a destabilizing influence on the algorithm.
Hence, the partials with respect to z and x respectively for Eq. (71) and (72) are

12
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assumed to be equal to zero. Also, the boundary conditions for the structural
deflections cquation (Equ. 66), stated in Equ. (12.a), (13.b), and (14.b), are finite
differenced and incorporated in the corresponding residual expressions.

The second part of the structural analysis is the structural sensitivity analysis
with respect to the four components of XDS, the vector of structural design variables.
The approach used is the same as the one used for the deflections. In other words, the
sensitivity equation is also divided into two components. Hence, when applying the
quasi-analytical approach to Eq. (75) and (78) the following equations are obtained:

JoTU . _— oTU |
STU ,, = RO D SUAET SN G A K0 SV (88)
: ou 0 XDS 0 XDS

oT. . [ & . oT,,
ST = ik i, kk + ik - 0 (89)

: AD 0 XDS 0 XDS
Here, it should be noted that s L , which shows that, as in the

oXDS oXDS J - -

deflection field solution, the output variable of the systém of Eq. (88) is used as an
input to Eq. (89). At the boundaries, Eqgs. (88) and (89) must take into account the
appropriate structural boundary conditions.

Aeroelastic Coupling and System Sensitivity Analyses

Aerodynamic-structural coupling can be carried out at two levels; defined here

to be zero and first order. The zero order coupling corresponds to an updating of the
aerodynamic boundary conditions each time_ after the structural deflections  are
calculated and vice versa.. However, sensitivities are computed as discipline
sensitivities and do not directly include the complete effects of aerodynamic-structural
coupling. On the other hand, the first order coupling is defined to mean that the effect

of the structure on the flowfield and vice versa is taken into account not only at the
flowfield-deflection level but also at the sensitivity level. For example, for the zero
order coupling the structural deflections affect the aerodynamic sensitivity derivatives
through the spanwise flow component ¢, in OR/OXDA while the ﬁ'rstrlroirderr coupling
also affects that expression through a coupling term 06,/05. This term is called a
coupling sensitivity. In this second case, the deflections are not considered constant in
the aerodynamic residual expressions (Eq. 18), as in the discipline specific analysis, and
are considered as design variables. Likewise, in first order coupling, the potentials
related to the C, calculation along the wing are treated as design variables for Eq. (19).
The terms that affect coupling the most are those that appear directly in the
residuals expressions. These are the deflections, since they enter directly in the
expression of the boundary conditions for the aerodynamic residuals, and the loads

AC,, which appear in the expressions of the structural residuals. However, as shown in

13
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Eq. (22), the coupling derivatives, 9JACp/d5 and 88/0ACp, are the essential components
of the system sensitivity matrix and are used to obtain the system sensitivity derivatives.
The equations for determining those coupling derivatives are presented in Eq. (25) and
(26). However, frequently not all the deflections or loads can be used in the system
matnx since such inclusions would often require extensive memory storage and CPU
times that are unrealistic. Hence, the choice of which loads and deflections to include
in the system sensitivity equation is subject to judgment and experimentation.
However, the more coupling variables are included, the more accurate the system
sensitivity derivatives should be.

Numerical Approach

The sensitivity matrix, associated with the linear sensitivity equations, as well as
the matrix resulting from the finite differencing of the flowfield and structural solutions,
are generally very sparse and ill conditioned, or not diagonally dominant. Thus, the
solution of the corresponding linear equations by standard direct solvers is memory
inefficient and iterative methods should be considered.67# In addition, since the non-
linear flowfield equations must be solved iteratively, the use of a similar iterative
scheme to obtain the sensitivities would seem to be appropriate.

A possible scheme is the incremental iterative technique,4® which has shown to
have better convergence characteristics in many cases than the standard iterative
techniques. This method comes from a formulation in which a system of algebraic
equations has the general form:38

[aXz"}+{B}= {0} (90)

where {Z'}, the solution vector, is obtained by the two step formulation:
-[Allarz} = [a]{z"} + {B] ©1)
tzp={z"}+{az} (92)

Here, n is the iteration index and [;1] is a convenient approximation of [ 4], generally
chosen to enhance the diagonal dominance and, thus, the convergence characteristics of
the system. v

The above formulation, when applied to sensitivity equations, still requires the
storage of a relatively large sensitivity matrix. However, the use of a point algorithm to
obtain the increments avoids that problem since it only requires the elements of the
matrix relevant to the calculation of the increment at point i,j,k. Obviously, such an
approach has the possible disadvantage of slower convergence. Nevertheless, since the
sensitivity equations are linear, their convergence should be faster than that of the
nonlinear flowfield. Unfortunately, the structural equations tend to behave like the
nonlinear flowfield equations in terms of convergence.

An example of such a point algorithm is the semi-implicit ZEBRA scheme!?
which mimics point successive over relaxation (SOR). The algorithm marches in the

14
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streamwise (I) direction solving by spanwise planes. In each plane, the points where
j+k are odd are denoted black and the ones where jtk are even are denoted white (Fig.
3). Each planc is solved by a two-pass sweep in which new black values are obtained
first, followed by the white ones. Convergence is thus accelerated because calculations
at the white points use updated values at the black points. Because of its uncoupled
formulation, this method is suitable for sequential, vector, and parallel machines.

Direction of Sweep

Fig. 3 Poin; Ijebehrdﬂerncre Tllustration

In the ZEBRA algorithm, because of the point semi-implicitness, the matrx [;1]

is reduced to a scalar B. Hence, the incremental changes in the unknowns can be found
in the following form for the aerodynamic potential, for example:

Ad. .. = Rii | pMp (93)
i.j.k B

where DMP is a damping term added for transonic stability. The same type of formulas
can also be used to calculate the increments for the aerodynamic sensitivity field
variables, structural deflections, structural sensitivity derivatives and coupling
derivatives field variables!é. The algorithm used is schematically described in the
following figure. 3
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Fig. 4 Integrated Solution Approach

RESULTS AND DISCUSSION

The wing configuration considered in this study has a rectangular planform of
constant unit chord. The geometric and structural design parameters describing the
wing as well as the nominal freestream conditions are listed in Table 1. It should be
noted that the root and tip airfoil sections are NACA 2406 and NACA 1706

respectively.
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Table | Wing Data

Aspect Ratio 3.17
o 2.0°

Zp 1.58

c 1.0
Typ -1.0°
TH,,, 0.06
TH, 0.06

Crom 0.02 J)(
C, 0.01
LCp 0.4 Y \zwg

LC,, 0.7
M, 0.82
E 1.0
v 0.33

The case presented here used a grid of 97 x 16 x 16 for the flowfield and 49 x
10 for the structural deflections. The freestream Mach number is supercritical and a
shock wave is present on the inboard sections of the upper surface of the wing.
However, the shock wave disappears on the outboard sections due to three dimensional
effects. Thus, this Mach number is interesting because it locally includes both the
subcritical and supercritical behavior of the flowfield and the corresponding
sensitivities. 1In all cases, to speed up convergence, a coarse-medium-fine grid
sequence halving in the x-direction was used in computing the analysis information.
Results were computed for equivalent plate thicknesses of five and two percent but
only the two percent results were shown in this paper. It should be noted that a one
percent thick case, while attempted, turmed out to be aeroelastically divergent. For the
coupling variables- ‘needed to determine the system sensitivities, five of the ten spanwise
stations were selected each involving twenty five of the forty-nine possible points. Itis
believed, since it is numerically difficult to include every point used in the fine ¢ grid, that
the deflections and loads selected for the coupling system coefficients in the sensitivites
will be representative. However, this choice is under investigation and will be further
dlscussed in the final paper.
upper surface shows a shock wave at approximately the x=0.5 location in ﬂié sections
near the root. The airfoil section, being non-constant from root to tip, is also drawn on
the same diagram and the angle of attack as well as the geometric twist are taken into
account when plotting the geometry. The final deflected shape of the airfoil due to
aeroelastic coupling is drawn in dashed lines but not to scale. The critical pressure
coefficient level CJ, is also shown and comparison of C,° with the pressures shows
that the shock wave weakens progressively when approachmg the tip, which is
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obviously subcritical. At the tip, the pressure distribution is typical of a subcnitical aft
cambered NACA section. One should note that due to the change in airfoil sections
from root to tip the wing has some inherent aerodynamic twist. However, unlike the
thick plate case!¢, the lower surface Cp curve at the tip section, goes above the upper
one causing the aerodynamic load at the leading edge to be negative.

The results for the discipline sensitivity derivatives are shown in Fig. 6-14 and
Fig. 16-19 while the ones for the system sensitivity derivatives are shown in Fig. 20
through 31. Pertinent portions will be selected and discussed in detail in the final
paper.

Fig. 15 shows the structural deflections at different span stations. Notice that
if a line is drawn from the leading to the trailing edge of the plate at each section, this
line would form an "angle of attack" with the x-axis which would be an induced twist
due to structural deflections. Further, even though the amplitudes are extremely small,
bending exists in the sections toward the wing tip. This "cambening" effect due to
chordwise bending is more pronounced as the tip is approached. In fact, the chordwise
section of the equivalent plate near the tip looks as a camber line that could cause an
increase in lift and could become a dominating component of the tip aerodynamics.
Further, the maximum of the structurally induced camber is a little bit aft of center.
Note that the spanwise edge of the equivalent plate is loaded due to the ACp there,
even though no concentrated loads or bending moments exist at the edges of the
equivalent plate. If the spanwise edge of the equivalent plate actually corresponded to
the wing tip, it would not be loaded and the cambering effect would be attenuated at
the tip. Again, pertinent features of the structural sensitivity derivatives shown on
Figs. 16-19 will be discussed in the final paper.

For clarity and length reasons, the system sensitivity derivatives plots are only
shown for three stations, in Fig. 20 to 31. For the sensitivity of the loads with respect
to the design variables the system and discipline curves almost agreed. However, a
discrepancy was noticed at the leading and trailing edge locations for the sensitivity of
the loads. Moreover, when compared to a case where thirteen stations chordwise were
chosen for eight spanwise stations differences were found for the structural system
sensitivities with respect to the aerodynamic design variables and for the loads system
sensitivities with respect to the structural design variables. This difference is currently
under study and will be discussed in the final paper. However, in all cases the system
structural sensitivities, d&/dXD, often differed in magnitude and, more importantly in
sign from the discipline sensitivity derivatives, 35/0XD. The origins and significance of
this behavior will be discussed in the final paper.
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45



[-u [LRRL
Wt

v e r

r

.

Summary

The system sensitivity analysis shows that the deflections at the tip as well as
the loads are going to decrease with an increase in . Likewise, an increase in the
values of TH THyp, Croon Ciipr LC o0 LCyp Ty and M, will cause an unloading of
the tip associated with a decrease in the deflections. Further, the structural variables t,
v, and E will cause an increase in the tip loading as well as the associated deflections.

The structurally induced camber is essential to the interpretation of these a priori
unexpected results.

root » roolr “tip> root> tip?

CONCLUSION

Based on the results presented, the use of the incremental-iterative technique
through the semi-implicit ZEBRA scheme to calculate the sensitivity derivatives
obtained from the quasi-analytical formulation has proven to be successful and very
computationally efficient. A large memory space for the storage of the sensitivity
matrix is not needed anymore and the sensitivity derivatives can be calculated at the
same time as the flowfield instead of using a converged flowfield solution as an input to
a sparse matrix solver.®

The saved computational resources can thus be used for finer gnds, more
design variables, and additional disciplines. Hence, a coupling of the aerodynamic
solver with a structural one and its sensitivities has been undertaken. This static
aeroelastic coupling is very efficient since the structural calculation and resultant
structural sensitivities and coupling sensitivities are computed at the same time as the
flowfield. In addition, the use of finite differencing to solve for the structural
deflections improves the efficiency of the scheme since no grid transformation is
necessary.

Because the system is multidisciplinary, the calculation of the system sensitivity
derivatives takes into account the influence of one discipline on the other. This
calculation relies on the "coupling" sensitivity derivatives that are not very easy to
obtain computationally since their respective convergence (especially for the deflection
with respect to load sensitivity) is slow. Results for the system sensitivities will be
discussed in the final paper.
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